This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004) (Revised by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn1suc.1 | ⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜓 ) ) | |
| nn1suc.3 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜒 ) ) | ||
| nn1suc.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜃 ) ) | ||
| nn1suc.5 | ⊢ 𝜓 | ||
| nn1suc.6 | ⊢ ( 𝑦 ∈ ℕ → 𝜒 ) | ||
| Assertion | nn1suc | ⊢ ( 𝐴 ∈ ℕ → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn1suc.1 | ⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | nn1suc.3 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | nn1suc.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | nn1suc.5 | ⊢ 𝜓 | |
| 5 | nn1suc.6 | ⊢ ( 𝑦 ∈ ℕ → 𝜒 ) | |
| 6 | 1ex | ⊢ 1 ∈ V | |
| 7 | 6 1 | sbcie | ⊢ ( [ 1 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 8 | 4 7 | mpbir | ⊢ [ 1 / 𝑥 ] 𝜑 |
| 9 | 1nn | ⊢ 1 ∈ ℕ | |
| 10 | eleq1 | ⊢ ( 𝐴 = 1 → ( 𝐴 ∈ ℕ ↔ 1 ∈ ℕ ) ) | |
| 11 | 9 10 | mpbiri | ⊢ ( 𝐴 = 1 → 𝐴 ∈ ℕ ) |
| 12 | 3 | sbcieg | ⊢ ( 𝐴 ∈ ℕ → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜃 ) ) |
| 13 | 11 12 | syl | ⊢ ( 𝐴 = 1 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜃 ) ) |
| 14 | dfsbcq | ⊢ ( 𝐴 = 1 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 1 / 𝑥 ] 𝜑 ) ) | |
| 15 | 13 14 | bitr3d | ⊢ ( 𝐴 = 1 → ( 𝜃 ↔ [ 1 / 𝑥 ] 𝜑 ) ) |
| 16 | 8 15 | mpbiri | ⊢ ( 𝐴 = 1 → 𝜃 ) |
| 17 | 16 | a1i | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 = 1 → 𝜃 ) ) |
| 18 | ovex | ⊢ ( 𝑦 + 1 ) ∈ V | |
| 19 | 18 2 | sbcie | ⊢ ( [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ↔ 𝜒 ) |
| 20 | oveq1 | ⊢ ( 𝑦 = ( 𝐴 − 1 ) → ( 𝑦 + 1 ) = ( ( 𝐴 − 1 ) + 1 ) ) | |
| 21 | 20 | sbceq1d | ⊢ ( 𝑦 = ( 𝐴 − 1 ) → ( [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ↔ [ ( ( 𝐴 − 1 ) + 1 ) / 𝑥 ] 𝜑 ) ) |
| 22 | 19 21 | bitr3id | ⊢ ( 𝑦 = ( 𝐴 − 1 ) → ( 𝜒 ↔ [ ( ( 𝐴 − 1 ) + 1 ) / 𝑥 ] 𝜑 ) ) |
| 23 | 22 5 | vtoclga | ⊢ ( ( 𝐴 − 1 ) ∈ ℕ → [ ( ( 𝐴 − 1 ) + 1 ) / 𝑥 ] 𝜑 ) |
| 24 | nncn | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) | |
| 25 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 26 | npcan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 − 1 ) + 1 ) = 𝐴 ) | |
| 27 | 24 25 26 | sylancl | ⊢ ( 𝐴 ∈ ℕ → ( ( 𝐴 − 1 ) + 1 ) = 𝐴 ) |
| 28 | 27 | sbceq1d | ⊢ ( 𝐴 ∈ ℕ → ( [ ( ( 𝐴 − 1 ) + 1 ) / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 29 | 28 12 | bitrd | ⊢ ( 𝐴 ∈ ℕ → ( [ ( ( 𝐴 − 1 ) + 1 ) / 𝑥 ] 𝜑 ↔ 𝜃 ) ) |
| 30 | 23 29 | imbitrid | ⊢ ( 𝐴 ∈ ℕ → ( ( 𝐴 − 1 ) ∈ ℕ → 𝜃 ) ) |
| 31 | nn1m1nn | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 = 1 ∨ ( 𝐴 − 1 ) ∈ ℕ ) ) | |
| 32 | 17 30 31 | mpjaod | ⊢ ( 𝐴 ∈ ℕ → 𝜃 ) |