This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004) (Revised by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn1suc.1 | |- ( x = 1 -> ( ph <-> ps ) ) |
|
| nn1suc.3 | |- ( x = ( y + 1 ) -> ( ph <-> ch ) ) |
||
| nn1suc.4 | |- ( x = A -> ( ph <-> th ) ) |
||
| nn1suc.5 | |- ps |
||
| nn1suc.6 | |- ( y e. NN -> ch ) |
||
| Assertion | nn1suc | |- ( A e. NN -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn1suc.1 | |- ( x = 1 -> ( ph <-> ps ) ) |
|
| 2 | nn1suc.3 | |- ( x = ( y + 1 ) -> ( ph <-> ch ) ) |
|
| 3 | nn1suc.4 | |- ( x = A -> ( ph <-> th ) ) |
|
| 4 | nn1suc.5 | |- ps |
|
| 5 | nn1suc.6 | |- ( y e. NN -> ch ) |
|
| 6 | 1ex | |- 1 e. _V |
|
| 7 | 6 1 | sbcie | |- ( [. 1 / x ]. ph <-> ps ) |
| 8 | 4 7 | mpbir | |- [. 1 / x ]. ph |
| 9 | 1nn | |- 1 e. NN |
|
| 10 | eleq1 | |- ( A = 1 -> ( A e. NN <-> 1 e. NN ) ) |
|
| 11 | 9 10 | mpbiri | |- ( A = 1 -> A e. NN ) |
| 12 | 3 | sbcieg | |- ( A e. NN -> ( [. A / x ]. ph <-> th ) ) |
| 13 | 11 12 | syl | |- ( A = 1 -> ( [. A / x ]. ph <-> th ) ) |
| 14 | dfsbcq | |- ( A = 1 -> ( [. A / x ]. ph <-> [. 1 / x ]. ph ) ) |
|
| 15 | 13 14 | bitr3d | |- ( A = 1 -> ( th <-> [. 1 / x ]. ph ) ) |
| 16 | 8 15 | mpbiri | |- ( A = 1 -> th ) |
| 17 | 16 | a1i | |- ( A e. NN -> ( A = 1 -> th ) ) |
| 18 | ovex | |- ( y + 1 ) e. _V |
|
| 19 | 18 2 | sbcie | |- ( [. ( y + 1 ) / x ]. ph <-> ch ) |
| 20 | oveq1 | |- ( y = ( A - 1 ) -> ( y + 1 ) = ( ( A - 1 ) + 1 ) ) |
|
| 21 | 20 | sbceq1d | |- ( y = ( A - 1 ) -> ( [. ( y + 1 ) / x ]. ph <-> [. ( ( A - 1 ) + 1 ) / x ]. ph ) ) |
| 22 | 19 21 | bitr3id | |- ( y = ( A - 1 ) -> ( ch <-> [. ( ( A - 1 ) + 1 ) / x ]. ph ) ) |
| 23 | 22 5 | vtoclga | |- ( ( A - 1 ) e. NN -> [. ( ( A - 1 ) + 1 ) / x ]. ph ) |
| 24 | nncn | |- ( A e. NN -> A e. CC ) |
|
| 25 | ax-1cn | |- 1 e. CC |
|
| 26 | npcan | |- ( ( A e. CC /\ 1 e. CC ) -> ( ( A - 1 ) + 1 ) = A ) |
|
| 27 | 24 25 26 | sylancl | |- ( A e. NN -> ( ( A - 1 ) + 1 ) = A ) |
| 28 | 27 | sbceq1d | |- ( A e. NN -> ( [. ( ( A - 1 ) + 1 ) / x ]. ph <-> [. A / x ]. ph ) ) |
| 29 | 28 12 | bitrd | |- ( A e. NN -> ( [. ( ( A - 1 ) + 1 ) / x ]. ph <-> th ) ) |
| 30 | 23 29 | imbitrid | |- ( A e. NN -> ( ( A - 1 ) e. NN -> th ) ) |
| 31 | nn1m1nn | |- ( A e. NN -> ( A = 1 \/ ( A - 1 ) e. NN ) ) |
|
| 32 | 17 30 31 | mpjaod | |- ( A e. NN -> th ) |