This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0pzuz | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ ) → ( 𝑁 + 𝑍 ) ∈ ( ℤ≥ ‘ 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ ) → 𝑍 ∈ ℤ ) | |
| 2 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 3 | zaddcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑍 ∈ ℤ ) → ( 𝑁 + 𝑍 ) ∈ ℤ ) | |
| 4 | 2 3 | sylan | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ ) → ( 𝑁 + 𝑍 ) ∈ ℤ ) |
| 5 | zre | ⊢ ( 𝑍 ∈ ℤ → 𝑍 ∈ ℝ ) | |
| 6 | nn0addge2 | ⊢ ( ( 𝑍 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → 𝑍 ≤ ( 𝑁 + 𝑍 ) ) | |
| 7 | 5 6 | sylan | ⊢ ( ( 𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑍 ≤ ( 𝑁 + 𝑍 ) ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ ) → 𝑍 ≤ ( 𝑁 + 𝑍 ) ) |
| 9 | eluz2 | ⊢ ( ( 𝑁 + 𝑍 ) ∈ ( ℤ≥ ‘ 𝑍 ) ↔ ( 𝑍 ∈ ℤ ∧ ( 𝑁 + 𝑍 ) ∈ ℤ ∧ 𝑍 ≤ ( 𝑁 + 𝑍 ) ) ) | |
| 10 | 1 4 8 9 | syl3anbrc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ ) → ( 𝑁 + 𝑍 ) ∈ ( ℤ≥ ‘ 𝑍 ) ) |