This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0pzuz | |- ( ( N e. NN0 /\ Z e. ZZ ) -> ( N + Z ) e. ( ZZ>= ` Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( N e. NN0 /\ Z e. ZZ ) -> Z e. ZZ ) |
|
| 2 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 3 | zaddcl | |- ( ( N e. ZZ /\ Z e. ZZ ) -> ( N + Z ) e. ZZ ) |
|
| 4 | 2 3 | sylan | |- ( ( N e. NN0 /\ Z e. ZZ ) -> ( N + Z ) e. ZZ ) |
| 5 | zre | |- ( Z e. ZZ -> Z e. RR ) |
|
| 6 | nn0addge2 | |- ( ( Z e. RR /\ N e. NN0 ) -> Z <_ ( N + Z ) ) |
|
| 7 | 5 6 | sylan | |- ( ( Z e. ZZ /\ N e. NN0 ) -> Z <_ ( N + Z ) ) |
| 8 | 7 | ancoms | |- ( ( N e. NN0 /\ Z e. ZZ ) -> Z <_ ( N + Z ) ) |
| 9 | eluz2 | |- ( ( N + Z ) e. ( ZZ>= ` Z ) <-> ( Z e. ZZ /\ ( N + Z ) e. ZZ /\ Z <_ ( N + Z ) ) ) |
|
| 10 | 1 4 8 9 | syl3anbrc | |- ( ( N e. NN0 /\ Z e. ZZ ) -> ( N + Z ) e. ( ZZ>= ` Z ) ) |