This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rather pretty lemma for nn0opthi . (Contributed by Raph Levien, 10-Dec-2002)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0opthlem1.1 | ⊢ 𝐴 ∈ ℕ0 | |
| nn0opthlem1.2 | ⊢ 𝐶 ∈ ℕ0 | ||
| Assertion | nn0opthlem1 | ⊢ ( 𝐴 < 𝐶 ↔ ( ( 𝐴 · 𝐴 ) + ( 2 · 𝐴 ) ) < ( 𝐶 · 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0opthlem1.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | nn0opthlem1.2 | ⊢ 𝐶 ∈ ℕ0 | |
| 3 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 4 | 1 3 | nn0addcli | ⊢ ( 𝐴 + 1 ) ∈ ℕ0 |
| 5 | 4 2 | nn0le2msqi | ⊢ ( ( 𝐴 + 1 ) ≤ 𝐶 ↔ ( ( 𝐴 + 1 ) · ( 𝐴 + 1 ) ) ≤ ( 𝐶 · 𝐶 ) ) |
| 6 | nn0ltp1le | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 < 𝐶 ↔ ( 𝐴 + 1 ) ≤ 𝐶 ) ) | |
| 7 | 1 2 6 | mp2an | ⊢ ( 𝐴 < 𝐶 ↔ ( 𝐴 + 1 ) ≤ 𝐶 ) |
| 8 | 1 1 | nn0mulcli | ⊢ ( 𝐴 · 𝐴 ) ∈ ℕ0 |
| 9 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 10 | 9 1 | nn0mulcli | ⊢ ( 2 · 𝐴 ) ∈ ℕ0 |
| 11 | 8 10 | nn0addcli | ⊢ ( ( 𝐴 · 𝐴 ) + ( 2 · 𝐴 ) ) ∈ ℕ0 |
| 12 | 2 2 | nn0mulcli | ⊢ ( 𝐶 · 𝐶 ) ∈ ℕ0 |
| 13 | nn0ltp1le | ⊢ ( ( ( ( 𝐴 · 𝐴 ) + ( 2 · 𝐴 ) ) ∈ ℕ0 ∧ ( 𝐶 · 𝐶 ) ∈ ℕ0 ) → ( ( ( 𝐴 · 𝐴 ) + ( 2 · 𝐴 ) ) < ( 𝐶 · 𝐶 ) ↔ ( ( ( 𝐴 · 𝐴 ) + ( 2 · 𝐴 ) ) + 1 ) ≤ ( 𝐶 · 𝐶 ) ) ) | |
| 14 | 11 12 13 | mp2an | ⊢ ( ( ( 𝐴 · 𝐴 ) + ( 2 · 𝐴 ) ) < ( 𝐶 · 𝐶 ) ↔ ( ( ( 𝐴 · 𝐴 ) + ( 2 · 𝐴 ) ) + 1 ) ≤ ( 𝐶 · 𝐶 ) ) |
| 15 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 16 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 17 | 15 16 | binom2i | ⊢ ( ( 𝐴 + 1 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 1 ) ) ) + ( 1 ↑ 2 ) ) |
| 18 | 15 16 | addcli | ⊢ ( 𝐴 + 1 ) ∈ ℂ |
| 19 | 18 | sqvali | ⊢ ( ( 𝐴 + 1 ) ↑ 2 ) = ( ( 𝐴 + 1 ) · ( 𝐴 + 1 ) ) |
| 20 | 15 | sqvali | ⊢ ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) |
| 21 | 20 | oveq1i | ⊢ ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 1 ) ) ) = ( ( 𝐴 · 𝐴 ) + ( 2 · ( 𝐴 · 1 ) ) ) |
| 22 | 16 | sqvali | ⊢ ( 1 ↑ 2 ) = ( 1 · 1 ) |
| 23 | 21 22 | oveq12i | ⊢ ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 1 ) ) ) + ( 1 ↑ 2 ) ) = ( ( ( 𝐴 · 𝐴 ) + ( 2 · ( 𝐴 · 1 ) ) ) + ( 1 · 1 ) ) |
| 24 | 17 19 23 | 3eqtr3i | ⊢ ( ( 𝐴 + 1 ) · ( 𝐴 + 1 ) ) = ( ( ( 𝐴 · 𝐴 ) + ( 2 · ( 𝐴 · 1 ) ) ) + ( 1 · 1 ) ) |
| 25 | 15 | mulridi | ⊢ ( 𝐴 · 1 ) = 𝐴 |
| 26 | 25 | oveq2i | ⊢ ( 2 · ( 𝐴 · 1 ) ) = ( 2 · 𝐴 ) |
| 27 | 26 | oveq2i | ⊢ ( ( 𝐴 · 𝐴 ) + ( 2 · ( 𝐴 · 1 ) ) ) = ( ( 𝐴 · 𝐴 ) + ( 2 · 𝐴 ) ) |
| 28 | 16 | mulridi | ⊢ ( 1 · 1 ) = 1 |
| 29 | 27 28 | oveq12i | ⊢ ( ( ( 𝐴 · 𝐴 ) + ( 2 · ( 𝐴 · 1 ) ) ) + ( 1 · 1 ) ) = ( ( ( 𝐴 · 𝐴 ) + ( 2 · 𝐴 ) ) + 1 ) |
| 30 | 24 29 | eqtri | ⊢ ( ( 𝐴 + 1 ) · ( 𝐴 + 1 ) ) = ( ( ( 𝐴 · 𝐴 ) + ( 2 · 𝐴 ) ) + 1 ) |
| 31 | 30 | breq1i | ⊢ ( ( ( 𝐴 + 1 ) · ( 𝐴 + 1 ) ) ≤ ( 𝐶 · 𝐶 ) ↔ ( ( ( 𝐴 · 𝐴 ) + ( 2 · 𝐴 ) ) + 1 ) ≤ ( 𝐶 · 𝐶 ) ) |
| 32 | 14 31 | bitr4i | ⊢ ( ( ( 𝐴 · 𝐴 ) + ( 2 · 𝐴 ) ) < ( 𝐶 · 𝐶 ) ↔ ( ( 𝐴 + 1 ) · ( 𝐴 + 1 ) ) ≤ ( 𝐶 · 𝐶 ) ) |
| 33 | 5 7 32 | 3bitr4i | ⊢ ( 𝐴 < 𝐶 ↔ ( ( 𝐴 · 𝐴 ) + ( 2 · 𝐴 ) ) < ( 𝐶 · 𝐶 ) ) |