This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rather pretty lemma for nn0opthi . (Contributed by Raph Levien, 10-Dec-2002)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0opthlem1.1 | |- A e. NN0 |
|
| nn0opthlem1.2 | |- C e. NN0 |
||
| Assertion | nn0opthlem1 | |- ( A < C <-> ( ( A x. A ) + ( 2 x. A ) ) < ( C x. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0opthlem1.1 | |- A e. NN0 |
|
| 2 | nn0opthlem1.2 | |- C e. NN0 |
|
| 3 | 1nn0 | |- 1 e. NN0 |
|
| 4 | 1 3 | nn0addcli | |- ( A + 1 ) e. NN0 |
| 5 | 4 2 | nn0le2msqi | |- ( ( A + 1 ) <_ C <-> ( ( A + 1 ) x. ( A + 1 ) ) <_ ( C x. C ) ) |
| 6 | nn0ltp1le | |- ( ( A e. NN0 /\ C e. NN0 ) -> ( A < C <-> ( A + 1 ) <_ C ) ) |
|
| 7 | 1 2 6 | mp2an | |- ( A < C <-> ( A + 1 ) <_ C ) |
| 8 | 1 1 | nn0mulcli | |- ( A x. A ) e. NN0 |
| 9 | 2nn0 | |- 2 e. NN0 |
|
| 10 | 9 1 | nn0mulcli | |- ( 2 x. A ) e. NN0 |
| 11 | 8 10 | nn0addcli | |- ( ( A x. A ) + ( 2 x. A ) ) e. NN0 |
| 12 | 2 2 | nn0mulcli | |- ( C x. C ) e. NN0 |
| 13 | nn0ltp1le | |- ( ( ( ( A x. A ) + ( 2 x. A ) ) e. NN0 /\ ( C x. C ) e. NN0 ) -> ( ( ( A x. A ) + ( 2 x. A ) ) < ( C x. C ) <-> ( ( ( A x. A ) + ( 2 x. A ) ) + 1 ) <_ ( C x. C ) ) ) |
|
| 14 | 11 12 13 | mp2an | |- ( ( ( A x. A ) + ( 2 x. A ) ) < ( C x. C ) <-> ( ( ( A x. A ) + ( 2 x. A ) ) + 1 ) <_ ( C x. C ) ) |
| 15 | 1 | nn0cni | |- A e. CC |
| 16 | ax-1cn | |- 1 e. CC |
|
| 17 | 15 16 | binom2i | |- ( ( A + 1 ) ^ 2 ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. 1 ) ) ) + ( 1 ^ 2 ) ) |
| 18 | 15 16 | addcli | |- ( A + 1 ) e. CC |
| 19 | 18 | sqvali | |- ( ( A + 1 ) ^ 2 ) = ( ( A + 1 ) x. ( A + 1 ) ) |
| 20 | 15 | sqvali | |- ( A ^ 2 ) = ( A x. A ) |
| 21 | 20 | oveq1i | |- ( ( A ^ 2 ) + ( 2 x. ( A x. 1 ) ) ) = ( ( A x. A ) + ( 2 x. ( A x. 1 ) ) ) |
| 22 | 16 | sqvali | |- ( 1 ^ 2 ) = ( 1 x. 1 ) |
| 23 | 21 22 | oveq12i | |- ( ( ( A ^ 2 ) + ( 2 x. ( A x. 1 ) ) ) + ( 1 ^ 2 ) ) = ( ( ( A x. A ) + ( 2 x. ( A x. 1 ) ) ) + ( 1 x. 1 ) ) |
| 24 | 17 19 23 | 3eqtr3i | |- ( ( A + 1 ) x. ( A + 1 ) ) = ( ( ( A x. A ) + ( 2 x. ( A x. 1 ) ) ) + ( 1 x. 1 ) ) |
| 25 | 15 | mulridi | |- ( A x. 1 ) = A |
| 26 | 25 | oveq2i | |- ( 2 x. ( A x. 1 ) ) = ( 2 x. A ) |
| 27 | 26 | oveq2i | |- ( ( A x. A ) + ( 2 x. ( A x. 1 ) ) ) = ( ( A x. A ) + ( 2 x. A ) ) |
| 28 | 16 | mulridi | |- ( 1 x. 1 ) = 1 |
| 29 | 27 28 | oveq12i | |- ( ( ( A x. A ) + ( 2 x. ( A x. 1 ) ) ) + ( 1 x. 1 ) ) = ( ( ( A x. A ) + ( 2 x. A ) ) + 1 ) |
| 30 | 24 29 | eqtri | |- ( ( A + 1 ) x. ( A + 1 ) ) = ( ( ( A x. A ) + ( 2 x. A ) ) + 1 ) |
| 31 | 30 | breq1i | |- ( ( ( A + 1 ) x. ( A + 1 ) ) <_ ( C x. C ) <-> ( ( ( A x. A ) + ( 2 x. A ) ) + 1 ) <_ ( C x. C ) ) |
| 32 | 14 31 | bitr4i | |- ( ( ( A x. A ) + ( 2 x. A ) ) < ( C x. C ) <-> ( ( A + 1 ) x. ( A + 1 ) ) <_ ( C x. C ) ) |
| 33 | 5 7 32 | 3bitr4i | |- ( A < C <-> ( ( A x. A ) + ( 2 x. A ) ) < ( C x. C ) ) |