This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nn0opthi . (Contributed by Raph Levien, 10-Dec-2002) (Revised by Scott Fenton, 8-Sep-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0opth.1 | ⊢ 𝐴 ∈ ℕ0 | |
| nn0opth.2 | ⊢ 𝐵 ∈ ℕ0 | ||
| nn0opth.3 | ⊢ 𝐶 ∈ ℕ0 | ||
| nn0opth.4 | ⊢ 𝐷 ∈ ℕ0 | ||
| Assertion | nn0opthlem2 | ⊢ ( ( 𝐴 + 𝐵 ) < 𝐶 → ( ( 𝐶 · 𝐶 ) + 𝐷 ) ≠ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0opth.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | nn0opth.2 | ⊢ 𝐵 ∈ ℕ0 | |
| 3 | nn0opth.3 | ⊢ 𝐶 ∈ ℕ0 | |
| 4 | nn0opth.4 | ⊢ 𝐷 ∈ ℕ0 | |
| 5 | 1 2 | nn0addcli | ⊢ ( 𝐴 + 𝐵 ) ∈ ℕ0 |
| 6 | 5 3 | nn0opthlem1 | ⊢ ( ( 𝐴 + 𝐵 ) < 𝐶 ↔ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + ( 2 · ( 𝐴 + 𝐵 ) ) ) < ( 𝐶 · 𝐶 ) ) |
| 7 | 2 | nn0rei | ⊢ 𝐵 ∈ ℝ |
| 8 | 7 1 | nn0addge2i | ⊢ 𝐵 ≤ ( 𝐴 + 𝐵 ) |
| 9 | 5 2 | nn0lele2xi | ⊢ ( 𝐵 ≤ ( 𝐴 + 𝐵 ) → 𝐵 ≤ ( 2 · ( 𝐴 + 𝐵 ) ) ) |
| 10 | 2re | ⊢ 2 ∈ ℝ | |
| 11 | 5 | nn0rei | ⊢ ( 𝐴 + 𝐵 ) ∈ ℝ |
| 12 | 10 11 | remulcli | ⊢ ( 2 · ( 𝐴 + 𝐵 ) ) ∈ ℝ |
| 13 | 11 11 | remulcli | ⊢ ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) ∈ ℝ |
| 14 | 7 12 13 | leadd2i | ⊢ ( 𝐵 ≤ ( 2 · ( 𝐴 + 𝐵 ) ) ↔ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ≤ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + ( 2 · ( 𝐴 + 𝐵 ) ) ) ) |
| 15 | 9 14 | sylib | ⊢ ( 𝐵 ≤ ( 𝐴 + 𝐵 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ≤ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + ( 2 · ( 𝐴 + 𝐵 ) ) ) ) |
| 16 | 8 15 | ax-mp | ⊢ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ≤ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + ( 2 · ( 𝐴 + 𝐵 ) ) ) |
| 17 | 13 7 | readdcli | ⊢ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ∈ ℝ |
| 18 | 13 12 | readdcli | ⊢ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + ( 2 · ( 𝐴 + 𝐵 ) ) ) ∈ ℝ |
| 19 | 3 | nn0rei | ⊢ 𝐶 ∈ ℝ |
| 20 | 19 19 | remulcli | ⊢ ( 𝐶 · 𝐶 ) ∈ ℝ |
| 21 | 17 18 20 | lelttri | ⊢ ( ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ≤ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + ( 2 · ( 𝐴 + 𝐵 ) ) ) ∧ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + ( 2 · ( 𝐴 + 𝐵 ) ) ) < ( 𝐶 · 𝐶 ) ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) < ( 𝐶 · 𝐶 ) ) |
| 22 | 16 21 | mpan | ⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + ( 2 · ( 𝐴 + 𝐵 ) ) ) < ( 𝐶 · 𝐶 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) < ( 𝐶 · 𝐶 ) ) |
| 23 | 6 22 | sylbi | ⊢ ( ( 𝐴 + 𝐵 ) < 𝐶 → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) < ( 𝐶 · 𝐶 ) ) |
| 24 | 20 4 | nn0addge1i | ⊢ ( 𝐶 · 𝐶 ) ≤ ( ( 𝐶 · 𝐶 ) + 𝐷 ) |
| 25 | 4 | nn0rei | ⊢ 𝐷 ∈ ℝ |
| 26 | 20 25 | readdcli | ⊢ ( ( 𝐶 · 𝐶 ) + 𝐷 ) ∈ ℝ |
| 27 | 17 20 26 | ltletri | ⊢ ( ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) < ( 𝐶 · 𝐶 ) ∧ ( 𝐶 · 𝐶 ) ≤ ( ( 𝐶 · 𝐶 ) + 𝐷 ) ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) < ( ( 𝐶 · 𝐶 ) + 𝐷 ) ) |
| 28 | 24 27 | mpan2 | ⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) < ( 𝐶 · 𝐶 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) < ( ( 𝐶 · 𝐶 ) + 𝐷 ) ) |
| 29 | 17 26 | ltnei | ⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) < ( ( 𝐶 · 𝐶 ) + 𝐷 ) → ( ( 𝐶 · 𝐶 ) + 𝐷 ) ≠ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ) |
| 30 | 23 28 29 | 3syl | ⊢ ( ( 𝐴 + 𝐵 ) < 𝐶 → ( ( 𝐶 · 𝐶 ) + 𝐷 ) ≠ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ) |