This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square function on nonnegative integers is monotonic. (Contributed by Raph Levien, 10-Dec-2002)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0le2msqi.1 | ⊢ 𝐴 ∈ ℕ0 | |
| nn0le2msqi.2 | ⊢ 𝐵 ∈ ℕ0 | ||
| Assertion | nn0le2msqi | ⊢ ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0le2msqi.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | nn0le2msqi.2 | ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 1 | nn0ge0i | ⊢ 0 ≤ 𝐴 |
| 4 | 2 | nn0ge0i | ⊢ 0 ≤ 𝐵 |
| 5 | 1 | nn0rei | ⊢ 𝐴 ∈ ℝ |
| 6 | 2 | nn0rei | ⊢ 𝐵 ∈ ℝ |
| 7 | 5 6 | le2sqi | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
| 8 | 3 4 7 | mp2an | ⊢ ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) |
| 9 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 10 | 9 | sqvali | ⊢ ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) |
| 11 | 2 | nn0cni | ⊢ 𝐵 ∈ ℂ |
| 12 | 11 | sqvali | ⊢ ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) |
| 13 | 10 12 | breq12i | ⊢ ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ) |
| 14 | 8 13 | bitri | ⊢ ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ) |