This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0oddm1d2 | ⊢ ( 𝑁 ∈ ℕ0 → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 2 | oddp1d2 | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 4 | peano2nn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) | |
| 5 | 4 | nn0red | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℝ ) |
| 6 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 7 | 6 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ+ ) |
| 8 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 9 | 1red | ⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℝ ) | |
| 10 | nn0ge0 | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) | |
| 11 | 0le1 | ⊢ 0 ≤ 1 | |
| 12 | 11 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 1 ) |
| 13 | 8 9 10 12 | addge0d | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ ( 𝑁 + 1 ) ) |
| 14 | 5 7 13 | divge0d | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ ( ( 𝑁 + 1 ) / 2 ) ) |
| 15 | 14 | anim1ci | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑁 + 1 ) / 2 ) ) ) |
| 16 | elnn0z | ⊢ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ↔ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑁 + 1 ) / 2 ) ) ) | |
| 17 | 15 16 | sylibr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) → ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) |
| 18 | 17 | ex | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) ) |
| 19 | nn0z | ⊢ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) | |
| 20 | 18 19 | impbid1 | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) ) |
| 21 | nn0ob | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) ) | |
| 22 | 3 20 21 | 3bitrd | ⊢ ( 𝑁 ∈ ℕ0 → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) ) |