This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0oddm1d2 | |- ( N e. NN0 -> ( -. 2 || N <-> ( ( N - 1 ) / 2 ) e. NN0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 2 | oddp1d2 | |- ( N e. ZZ -> ( -. 2 || N <-> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
|
| 3 | 1 2 | syl | |- ( N e. NN0 -> ( -. 2 || N <-> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 4 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 5 | 4 | nn0red | |- ( N e. NN0 -> ( N + 1 ) e. RR ) |
| 6 | 2rp | |- 2 e. RR+ |
|
| 7 | 6 | a1i | |- ( N e. NN0 -> 2 e. RR+ ) |
| 8 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 9 | 1red | |- ( N e. NN0 -> 1 e. RR ) |
|
| 10 | nn0ge0 | |- ( N e. NN0 -> 0 <_ N ) |
|
| 11 | 0le1 | |- 0 <_ 1 |
|
| 12 | 11 | a1i | |- ( N e. NN0 -> 0 <_ 1 ) |
| 13 | 8 9 10 12 | addge0d | |- ( N e. NN0 -> 0 <_ ( N + 1 ) ) |
| 14 | 5 7 13 | divge0d | |- ( N e. NN0 -> 0 <_ ( ( N + 1 ) / 2 ) ) |
| 15 | 14 | anim1ci | |- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( ( N + 1 ) / 2 ) e. ZZ /\ 0 <_ ( ( N + 1 ) / 2 ) ) ) |
| 16 | elnn0z | |- ( ( ( N + 1 ) / 2 ) e. NN0 <-> ( ( ( N + 1 ) / 2 ) e. ZZ /\ 0 <_ ( ( N + 1 ) / 2 ) ) ) |
|
| 17 | 15 16 | sylibr | |- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( N + 1 ) / 2 ) e. NN0 ) |
| 18 | 17 | ex | |- ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. NN0 ) ) |
| 19 | nn0z | |- ( ( ( N + 1 ) / 2 ) e. NN0 -> ( ( N + 1 ) / 2 ) e. ZZ ) |
|
| 20 | 18 19 | impbid1 | |- ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. ZZ <-> ( ( N + 1 ) / 2 ) e. NN0 ) ) |
| 21 | nn0ob | |- ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 <-> ( ( N - 1 ) / 2 ) e. NN0 ) ) |
|
| 22 | 3 20 21 | 3bitrd | |- ( N e. NN0 -> ( -. 2 || N <-> ( ( N - 1 ) / 2 ) e. NN0 ) ) |