This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnoddm1d2 | ⊢ ( 𝑁 ∈ ℕ → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 2 | oddp1d2 | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 4 | peano2nn | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) | |
| 5 | 4 | nnred | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℝ ) |
| 6 | 2re | ⊢ 2 ∈ ℝ | |
| 7 | 6 | a1i | ⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ ) |
| 8 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 9 | 1red | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℝ ) | |
| 10 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 11 | 0lt1 | ⊢ 0 < 1 | |
| 12 | 11 | a1i | ⊢ ( 𝑁 ∈ ℕ → 0 < 1 ) |
| 13 | 8 9 10 12 | addgt0d | ⊢ ( 𝑁 ∈ ℕ → 0 < ( 𝑁 + 1 ) ) |
| 14 | 2pos | ⊢ 0 < 2 | |
| 15 | 14 | a1i | ⊢ ( 𝑁 ∈ ℕ → 0 < 2 ) |
| 16 | 5 7 13 15 | divgt0d | ⊢ ( 𝑁 ∈ ℕ → 0 < ( ( 𝑁 + 1 ) / 2 ) ) |
| 17 | 16 | anim1ci | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 0 < ( ( 𝑁 + 1 ) / 2 ) ) ) |
| 18 | elnnz | ⊢ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ↔ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 0 < ( ( 𝑁 + 1 ) / 2 ) ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) → ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) |
| 20 | 19 | ex | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |
| 21 | nnz | ⊢ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) | |
| 22 | 20 21 | impbid1 | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |
| 23 | 3 22 | bitrd | ⊢ ( 𝑁 ∈ ℕ → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |