This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0ob | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0o | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) | |
| 2 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 3 | xp1d2m1eqxm1d2 | ⊢ ( 𝑁 ∈ ℂ → ( ( ( 𝑁 + 1 ) / 2 ) − 1 ) = ( ( 𝑁 − 1 ) / 2 ) ) | |
| 4 | 3 | eqcomd | ⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) / 2 ) = ( ( ( 𝑁 + 1 ) / 2 ) − 1 ) ) |
| 5 | 2 4 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 − 1 ) / 2 ) = ( ( ( 𝑁 + 1 ) / 2 ) − 1 ) ) |
| 6 | peano2cnm | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 − 1 ) ∈ ℂ ) | |
| 7 | 2 6 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 − 1 ) ∈ ℂ ) |
| 8 | 7 | halfcld | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 − 1 ) / 2 ) ∈ ℂ ) |
| 9 | 1cnd | ⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℂ ) | |
| 10 | peano2nn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) | |
| 11 | 10 | nn0cnd | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℂ ) |
| 12 | 11 | halfcld | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) / 2 ) ∈ ℂ ) |
| 13 | 8 9 12 | addlsub | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( ( 𝑁 − 1 ) / 2 ) + 1 ) = ( ( 𝑁 + 1 ) / 2 ) ↔ ( ( 𝑁 − 1 ) / 2 ) = ( ( ( 𝑁 + 1 ) / 2 ) − 1 ) ) ) |
| 14 | 5 13 | mpbird | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 − 1 ) / 2 ) + 1 ) = ( ( 𝑁 + 1 ) / 2 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) → ( ( ( 𝑁 − 1 ) / 2 ) + 1 ) = ( ( 𝑁 + 1 ) / 2 ) ) |
| 16 | peano2nn0 | ⊢ ( ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 → ( ( ( 𝑁 − 1 ) / 2 ) + 1 ) ∈ ℕ0 ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) → ( ( ( 𝑁 − 1 ) / 2 ) + 1 ) ∈ ℕ0 ) |
| 18 | 15 17 | eqeltrrd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) → ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) |
| 19 | 1 18 | impbida | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) ) |