This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | addlsub.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| addlsub.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| addlsub.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | addlsub | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = 𝐶 ↔ 𝐴 = ( 𝐶 − 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addlsub.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | addlsub.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | addlsub.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | oveq1 | ⊢ ( ( 𝐴 + 𝐵 ) = 𝐶 → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = ( 𝐶 − 𝐵 ) ) | |
| 5 | 1 2 | pncand | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) |
| 6 | eqtr2 | ⊢ ( ( ( ( 𝐴 + 𝐵 ) − 𝐵 ) = ( 𝐶 − 𝐵 ) ∧ ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) → ( 𝐶 − 𝐵 ) = 𝐴 ) | |
| 7 | 6 | eqcomd | ⊢ ( ( ( ( 𝐴 + 𝐵 ) − 𝐵 ) = ( 𝐶 − 𝐵 ) ∧ ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) → 𝐴 = ( 𝐶 − 𝐵 ) ) |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ( ( ( ( 𝐴 + 𝐵 ) − 𝐵 ) = ( 𝐶 − 𝐵 ) ∧ ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) → 𝐴 = ( 𝐶 − 𝐵 ) ) ) |
| 9 | 5 8 | mpan2d | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) − 𝐵 ) = ( 𝐶 − 𝐵 ) → 𝐴 = ( 𝐶 − 𝐵 ) ) ) |
| 10 | 4 9 | syl5 | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = 𝐶 → 𝐴 = ( 𝐶 − 𝐵 ) ) ) |
| 11 | oveq1 | ⊢ ( 𝐴 = ( 𝐶 − 𝐵 ) → ( 𝐴 + 𝐵 ) = ( ( 𝐶 − 𝐵 ) + 𝐵 ) ) | |
| 12 | 3 2 | npcand | ⊢ ( 𝜑 → ( ( 𝐶 − 𝐵 ) + 𝐵 ) = 𝐶 ) |
| 13 | eqtr | ⊢ ( ( ( 𝐴 + 𝐵 ) = ( ( 𝐶 − 𝐵 ) + 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) + 𝐵 ) = 𝐶 ) → ( 𝐴 + 𝐵 ) = 𝐶 ) | |
| 14 | 13 | a1i | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) = ( ( 𝐶 − 𝐵 ) + 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) + 𝐵 ) = 𝐶 ) → ( 𝐴 + 𝐵 ) = 𝐶 ) ) |
| 15 | 12 14 | mpan2d | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = ( ( 𝐶 − 𝐵 ) + 𝐵 ) → ( 𝐴 + 𝐵 ) = 𝐶 ) ) |
| 16 | 11 15 | syl5 | ⊢ ( 𝜑 → ( 𝐴 = ( 𝐶 − 𝐵 ) → ( 𝐴 + 𝐵 ) = 𝐶 ) ) |
| 17 | 10 16 | impbid | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = 𝐶 ↔ 𝐴 = ( 𝐶 − 𝐵 ) ) ) |