This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0o1gt2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 2 | elnnnn0c | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ) ) | |
| 3 | 1red | ⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℝ ) | |
| 4 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 5 | 3 4 | leloed | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 ≤ 𝑁 ↔ ( 1 < 𝑁 ∨ 1 = 𝑁 ) ) ) |
| 6 | 1zzd | ⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℤ ) | |
| 7 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 8 | zltp1le | ⊢ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 1 < 𝑁 ↔ ( 1 + 1 ) ≤ 𝑁 ) ) | |
| 9 | 6 7 8 | syl2anc | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 < 𝑁 ↔ ( 1 + 1 ) ≤ 𝑁 ) ) |
| 10 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 11 | 10 | breq1i | ⊢ ( ( 1 + 1 ) ≤ 𝑁 ↔ 2 ≤ 𝑁 ) |
| 12 | 11 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 1 + 1 ) ≤ 𝑁 ↔ 2 ≤ 𝑁 ) ) |
| 13 | 2re | ⊢ 2 ∈ ℝ | |
| 14 | 13 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ ) |
| 15 | 14 4 | leloed | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 ≤ 𝑁 ↔ ( 2 < 𝑁 ∨ 2 = 𝑁 ) ) ) |
| 16 | 9 12 15 | 3bitrd | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 < 𝑁 ↔ ( 2 < 𝑁 ∨ 2 = 𝑁 ) ) ) |
| 17 | olc | ⊢ ( 2 < 𝑁 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) | |
| 18 | 17 | 2a1d | ⊢ ( 2 < 𝑁 → ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 19 | oveq1 | ⊢ ( 𝑁 = 2 → ( 𝑁 + 1 ) = ( 2 + 1 ) ) | |
| 20 | 19 | oveq1d | ⊢ ( 𝑁 = 2 → ( ( 𝑁 + 1 ) / 2 ) = ( ( 2 + 1 ) / 2 ) ) |
| 21 | 20 | eqcoms | ⊢ ( 2 = 𝑁 → ( ( 𝑁 + 1 ) / 2 ) = ( ( 2 + 1 ) / 2 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 = 𝑁 ) → ( ( 𝑁 + 1 ) / 2 ) = ( ( 2 + 1 ) / 2 ) ) |
| 23 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 24 | 23 | oveq1i | ⊢ ( ( 2 + 1 ) / 2 ) = ( 3 / 2 ) |
| 25 | 22 24 | eqtrdi | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 = 𝑁 ) → ( ( 𝑁 + 1 ) / 2 ) = ( 3 / 2 ) ) |
| 26 | 25 | eleq1d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 = 𝑁 ) → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ↔ ( 3 / 2 ) ∈ ℕ0 ) ) |
| 27 | 3halfnz | ⊢ ¬ ( 3 / 2 ) ∈ ℤ | |
| 28 | nn0z | ⊢ ( ( 3 / 2 ) ∈ ℕ0 → ( 3 / 2 ) ∈ ℤ ) | |
| 29 | 28 | pm2.24d | ⊢ ( ( 3 / 2 ) ∈ ℕ0 → ( ¬ ( 3 / 2 ) ∈ ℤ → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
| 30 | 27 29 | mpi | ⊢ ( ( 3 / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) |
| 31 | 26 30 | biimtrdi | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 = 𝑁 ) → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
| 32 | 31 | expcom | ⊢ ( 2 = 𝑁 → ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 33 | 18 32 | jaoi | ⊢ ( ( 2 < 𝑁 ∨ 2 = 𝑁 ) → ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 34 | 33 | com12 | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 < 𝑁 ∨ 2 = 𝑁 ) → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 35 | 16 34 | sylbid | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 < 𝑁 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 36 | 35 | com12 | ⊢ ( 1 < 𝑁 → ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 37 | orc | ⊢ ( 𝑁 = 1 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) | |
| 38 | 37 | eqcoms | ⊢ ( 1 = 𝑁 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) |
| 39 | 38 | 2a1d | ⊢ ( 1 = 𝑁 → ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 40 | 36 39 | jaoi | ⊢ ( ( 1 < 𝑁 ∨ 1 = 𝑁 ) → ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 41 | 40 | com12 | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 1 < 𝑁 ∨ 1 = 𝑁 ) → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 42 | 5 41 | sylbid | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 ≤ 𝑁 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 43 | 42 | imp | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ) → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
| 44 | 2 43 | sylbi | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
| 45 | oveq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 + 1 ) = ( 0 + 1 ) ) | |
| 46 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 47 | 45 46 | eqtrdi | ⊢ ( 𝑁 = 0 → ( 𝑁 + 1 ) = 1 ) |
| 48 | 47 | oveq1d | ⊢ ( 𝑁 = 0 → ( ( 𝑁 + 1 ) / 2 ) = ( 1 / 2 ) ) |
| 49 | 48 | eleq1d | ⊢ ( 𝑁 = 0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ↔ ( 1 / 2 ) ∈ ℕ0 ) ) |
| 50 | halfnz | ⊢ ¬ ( 1 / 2 ) ∈ ℤ | |
| 51 | nn0z | ⊢ ( ( 1 / 2 ) ∈ ℕ0 → ( 1 / 2 ) ∈ ℤ ) | |
| 52 | 51 | pm2.24d | ⊢ ( ( 1 / 2 ) ∈ ℕ0 → ( ¬ ( 1 / 2 ) ∈ ℤ → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
| 53 | 50 52 | mpi | ⊢ ( ( 1 / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) |
| 54 | 49 53 | biimtrdi | ⊢ ( 𝑁 = 0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
| 55 | 44 54 | jaoi | ⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
| 56 | 1 55 | sylbi | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
| 57 | 56 | imp | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) |