This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0lt2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 < 2 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc | ⊢ ( 𝑁 = 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) | |
| 2 | 1 | a1d | ⊢ ( 𝑁 = 1 → ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 < 2 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 3 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 4 | 2z | ⊢ 2 ∈ ℤ | |
| 5 | zltlem1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 𝑁 < 2 ↔ 𝑁 ≤ ( 2 − 1 ) ) ) | |
| 6 | 3 4 5 | sylancl | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 2 ↔ 𝑁 ≤ ( 2 − 1 ) ) ) |
| 7 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 8 | 7 | breq2i | ⊢ ( 𝑁 ≤ ( 2 − 1 ) ↔ 𝑁 ≤ 1 ) |
| 9 | 6 8 | bitrdi | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 2 ↔ 𝑁 ≤ 1 ) ) |
| 10 | necom | ⊢ ( 𝑁 ≠ 1 ↔ 1 ≠ 𝑁 ) | |
| 11 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 12 | 1re | ⊢ 1 ∈ ℝ | |
| 13 | ltlen | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑁 < 1 ↔ ( 𝑁 ≤ 1 ∧ 1 ≠ 𝑁 ) ) ) | |
| 14 | 11 12 13 | sylancl | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 1 ↔ ( 𝑁 ≤ 1 ∧ 1 ≠ 𝑁 ) ) ) |
| 15 | nn0lt10b | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 1 ↔ 𝑁 = 0 ) ) | |
| 16 | 15 | biimpa | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 < 1 ) → 𝑁 = 0 ) |
| 17 | 16 | orcd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 < 1 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
| 18 | 17 | ex | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 19 | 14 18 | sylbird | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 ≤ 1 ∧ 1 ≠ 𝑁 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 20 | 19 | expd | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≤ 1 → ( 1 ≠ 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) ) |
| 21 | 10 20 | syl7bi | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≤ 1 → ( 𝑁 ≠ 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) ) |
| 22 | 9 21 | sylbid | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 2 → ( 𝑁 ≠ 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) ) |
| 23 | 22 | imp | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 < 2 ) → ( 𝑁 ≠ 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 24 | 23 | com12 | ⊢ ( 𝑁 ≠ 1 → ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 < 2 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 25 | 2 24 | pm2.61ine | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 < 2 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |