This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0lt2 | |- ( ( N e. NN0 /\ N < 2 ) -> ( N = 0 \/ N = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc | |- ( N = 1 -> ( N = 0 \/ N = 1 ) ) |
|
| 2 | 1 | a1d | |- ( N = 1 -> ( ( N e. NN0 /\ N < 2 ) -> ( N = 0 \/ N = 1 ) ) ) |
| 3 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 4 | 2z | |- 2 e. ZZ |
|
| 5 | zltlem1 | |- ( ( N e. ZZ /\ 2 e. ZZ ) -> ( N < 2 <-> N <_ ( 2 - 1 ) ) ) |
|
| 6 | 3 4 5 | sylancl | |- ( N e. NN0 -> ( N < 2 <-> N <_ ( 2 - 1 ) ) ) |
| 7 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 8 | 7 | breq2i | |- ( N <_ ( 2 - 1 ) <-> N <_ 1 ) |
| 9 | 6 8 | bitrdi | |- ( N e. NN0 -> ( N < 2 <-> N <_ 1 ) ) |
| 10 | necom | |- ( N =/= 1 <-> 1 =/= N ) |
|
| 11 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 12 | 1re | |- 1 e. RR |
|
| 13 | ltlen | |- ( ( N e. RR /\ 1 e. RR ) -> ( N < 1 <-> ( N <_ 1 /\ 1 =/= N ) ) ) |
|
| 14 | 11 12 13 | sylancl | |- ( N e. NN0 -> ( N < 1 <-> ( N <_ 1 /\ 1 =/= N ) ) ) |
| 15 | nn0lt10b | |- ( N e. NN0 -> ( N < 1 <-> N = 0 ) ) |
|
| 16 | 15 | biimpa | |- ( ( N e. NN0 /\ N < 1 ) -> N = 0 ) |
| 17 | 16 | orcd | |- ( ( N e. NN0 /\ N < 1 ) -> ( N = 0 \/ N = 1 ) ) |
| 18 | 17 | ex | |- ( N e. NN0 -> ( N < 1 -> ( N = 0 \/ N = 1 ) ) ) |
| 19 | 14 18 | sylbird | |- ( N e. NN0 -> ( ( N <_ 1 /\ 1 =/= N ) -> ( N = 0 \/ N = 1 ) ) ) |
| 20 | 19 | expd | |- ( N e. NN0 -> ( N <_ 1 -> ( 1 =/= N -> ( N = 0 \/ N = 1 ) ) ) ) |
| 21 | 10 20 | syl7bi | |- ( N e. NN0 -> ( N <_ 1 -> ( N =/= 1 -> ( N = 0 \/ N = 1 ) ) ) ) |
| 22 | 9 21 | sylbid | |- ( N e. NN0 -> ( N < 2 -> ( N =/= 1 -> ( N = 0 \/ N = 1 ) ) ) ) |
| 23 | 22 | imp | |- ( ( N e. NN0 /\ N < 2 ) -> ( N =/= 1 -> ( N = 0 \/ N = 1 ) ) ) |
| 24 | 23 | com12 | |- ( N =/= 1 -> ( ( N e. NN0 /\ N < 2 ) -> ( N = 0 \/ N = 1 ) ) ) |
| 25 | 2 24 | pm2.61ine | |- ( ( N e. NN0 /\ N < 2 ) -> ( N = 0 \/ N = 1 ) ) |