This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0le2is012 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 2 | 2re | ⊢ 2 ∈ ℝ | |
| 3 | 2 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ ) |
| 4 | 1 3 | leloed | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≤ 2 ↔ ( 𝑁 < 2 ∨ 𝑁 = 2 ) ) ) |
| 5 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 6 | 2z | ⊢ 2 ∈ ℤ | |
| 7 | zltlem1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 𝑁 < 2 ↔ 𝑁 ≤ ( 2 − 1 ) ) ) | |
| 8 | 5 6 7 | sylancl | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 2 ↔ 𝑁 ≤ ( 2 − 1 ) ) ) |
| 9 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 10 | 9 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 − 1 ) = 1 ) |
| 11 | 10 | breq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≤ ( 2 − 1 ) ↔ 𝑁 ≤ 1 ) ) |
| 12 | 8 11 | bitrd | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 2 ↔ 𝑁 ≤ 1 ) ) |
| 13 | 1red | ⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℝ ) | |
| 14 | 1 13 | leloed | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≤ 1 ↔ ( 𝑁 < 1 ∨ 𝑁 = 1 ) ) ) |
| 15 | nn0lt10b | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 1 ↔ 𝑁 = 0 ) ) | |
| 16 | 3mix1 | ⊢ ( 𝑁 = 0 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) | |
| 17 | 15 16 | biimtrdi | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 18 | 17 | com12 | ⊢ ( 𝑁 < 1 → ( 𝑁 ∈ ℕ0 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 19 | 3mix2 | ⊢ ( 𝑁 = 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) | |
| 20 | 19 | a1d | ⊢ ( 𝑁 = 1 → ( 𝑁 ∈ ℕ0 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 21 | 18 20 | jaoi | ⊢ ( ( 𝑁 < 1 ∨ 𝑁 = 1 ) → ( 𝑁 ∈ ℕ0 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 22 | 21 | com12 | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 < 1 ∨ 𝑁 = 1 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 23 | 14 22 | sylbid | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≤ 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 24 | 12 23 | sylbid | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 2 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 25 | 24 | com12 | ⊢ ( 𝑁 < 2 → ( 𝑁 ∈ ℕ0 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 26 | 3mix3 | ⊢ ( 𝑁 = 2 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) | |
| 27 | 26 | a1d | ⊢ ( 𝑁 = 2 → ( 𝑁 ∈ ℕ0 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 28 | 25 27 | jaoi | ⊢ ( ( 𝑁 < 2 ∨ 𝑁 = 2 ) → ( 𝑁 ∈ ℕ0 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 29 | 28 | com12 | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 < 2 ∨ 𝑁 = 2 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 30 | 4 29 | sylbid | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≤ 2 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 31 | 30 | imp | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) |