This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The triangle inequality for the norm of a sum. (Contributed by NM, 11-Nov-2006) (Revised by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf.x | |- X = ( Base ` G ) |
|
| nmf.n | |- N = ( norm ` G ) |
||
| nmtri.p | |- .+ = ( +g ` G ) |
||
| Assertion | nmtri | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` ( A .+ B ) ) <_ ( ( N ` A ) + ( N ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf.x | |- X = ( Base ` G ) |
|
| 2 | nmf.n | |- N = ( norm ` G ) |
|
| 3 | nmtri.p | |- .+ = ( +g ` G ) |
|
| 4 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> G e. Grp ) |
| 6 | simp3 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> B e. X ) |
|
| 7 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 8 | 1 7 | grpinvcl | |- ( ( G e. Grp /\ B e. X ) -> ( ( invg ` G ) ` B ) e. X ) |
| 9 | 5 6 8 | syl2anc | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( invg ` G ) ` B ) e. X ) |
| 10 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 11 | 1 2 10 | nmmtri | |- ( ( G e. NrmGrp /\ A e. X /\ ( ( invg ` G ) ` B ) e. X ) -> ( N ` ( A ( -g ` G ) ( ( invg ` G ) ` B ) ) ) <_ ( ( N ` A ) + ( N ` ( ( invg ` G ) ` B ) ) ) ) |
| 12 | 9 11 | syld3an3 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` ( A ( -g ` G ) ( ( invg ` G ) ` B ) ) ) <_ ( ( N ` A ) + ( N ` ( ( invg ` G ) ` B ) ) ) ) |
| 13 | simp2 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> A e. X ) |
|
| 14 | 1 3 10 7 5 13 6 | grpsubinv | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A ( -g ` G ) ( ( invg ` G ) ` B ) ) = ( A .+ B ) ) |
| 15 | 14 | fveq2d | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` ( A ( -g ` G ) ( ( invg ` G ) ` B ) ) ) = ( N ` ( A .+ B ) ) ) |
| 16 | 1 2 7 | nminv | |- ( ( G e. NrmGrp /\ B e. X ) -> ( N ` ( ( invg ` G ) ` B ) ) = ( N ` B ) ) |
| 17 | 16 | 3adant2 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` ( ( invg ` G ) ` B ) ) = ( N ` B ) ) |
| 18 | 17 | oveq2d | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( N ` A ) + ( N ` ( ( invg ` G ) ` B ) ) ) = ( ( N ` A ) + ( N ` B ) ) ) |
| 19 | 12 15 18 | 3brtr3d | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` ( A .+ B ) ) <_ ( ( N ` A ) + ( N ` B ) ) ) |