This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the norm of two subtractions. (Contributed by NM, 24-Feb-2008) (Revised by AV, 8-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmtri2.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| nmtri2.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | ||
| nmtri2.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | nmtri2 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝐴 − 𝐶 ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) + ( 𝑁 ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmtri2.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | nmtri2.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 3 | nmtri2.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 6 | 1 5 3 | grpnpncan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 − 𝐵 ) ( +g ‘ 𝐺 ) ( 𝐵 − 𝐶 ) ) = ( 𝐴 − 𝐶 ) ) |
| 7 | 6 | eqcomd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 − 𝐶 ) = ( ( 𝐴 − 𝐵 ) ( +g ‘ 𝐺 ) ( 𝐵 − 𝐶 ) ) ) |
| 8 | 4 7 | sylan | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 − 𝐶 ) = ( ( 𝐴 − 𝐵 ) ( +g ‘ 𝐺 ) ( 𝐵 − 𝐶 ) ) ) |
| 9 | 8 | fveq2d | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝐴 − 𝐶 ) ) = ( 𝑁 ‘ ( ( 𝐴 − 𝐵 ) ( +g ‘ 𝐺 ) ( 𝐵 − 𝐶 ) ) ) ) |
| 10 | simpl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐺 ∈ NrmGrp ) | |
| 11 | 4 | adantr | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 12 | simpr1 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 13 | simpr2 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 14 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 − 𝐵 ) ∈ 𝑋 ) |
| 15 | 11 12 13 14 | syl3anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 − 𝐵 ) ∈ 𝑋 ) |
| 16 | simpr3 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐶 ∈ 𝑋 ) | |
| 17 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 − 𝐶 ) ∈ 𝑋 ) |
| 18 | 11 13 16 17 | syl3anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 − 𝐶 ) ∈ 𝑋 ) |
| 19 | 1 2 5 | nmtri | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 − 𝐵 ) ∈ 𝑋 ∧ ( 𝐵 − 𝐶 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 𝐴 − 𝐵 ) ( +g ‘ 𝐺 ) ( 𝐵 − 𝐶 ) ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) + ( 𝑁 ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| 20 | 10 15 18 19 | syl3anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( ( 𝐴 − 𝐵 ) ( +g ‘ 𝐺 ) ( 𝐵 − 𝐶 ) ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) + ( 𝑁 ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| 21 | 9 20 | eqbrtrd | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝐴 − 𝐶 ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) + ( 𝑁 ‘ ( 𝐵 − 𝐶 ) ) ) ) |