This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse triangle inequality for the norm of a subtraction. Problem 3 of Kreyszig p. 64. (Contributed by NM, 4-Dec-2006) (Revised by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| nmf.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | ||
| nmmtri.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | nmrtri | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑁 ‘ 𝐴 ) − ( 𝑁 ‘ 𝐵 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | nmf.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 3 | nmmtri.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | ngpms | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐺 ∈ MetSp ) |
| 6 | simp2 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 7 | simp3 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) | |
| 8 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 10 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 11 | 1 10 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 12 | 9 11 | syl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 13 | eqid | ⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) | |
| 14 | 1 13 | msrtri | ⊢ ( ( 𝐺 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑋 ) ) → ( abs ‘ ( ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) − ( 𝐵 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) ≤ ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) ) |
| 15 | 5 6 7 12 14 | syl13anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) − ( 𝐵 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) ≤ ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) ) |
| 16 | 2 1 10 13 | nmval | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑁 ‘ 𝐴 ) = ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 17 | 16 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 18 | 2 1 10 13 | nmval | ⊢ ( 𝐵 ∈ 𝑋 → ( 𝑁 ‘ 𝐵 ) = ( 𝐵 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 19 | 18 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) = ( 𝐵 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 20 | 17 19 | oveq12d | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) − ( 𝑁 ‘ 𝐵 ) ) = ( ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) − ( 𝐵 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) |
| 21 | 20 | fveq2d | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑁 ‘ 𝐴 ) − ( 𝑁 ‘ 𝐵 ) ) ) = ( abs ‘ ( ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) − ( 𝐵 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) ) |
| 22 | 2 1 3 13 | ngpds | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) = ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ) |
| 23 | 22 | eqcomd | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) ) |
| 24 | 15 21 23 | 3brtr4d | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑁 ‘ 𝐴 ) − ( 𝑁 ‘ 𝐵 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ) |