This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse triangle inequality for the norm of a subtraction. Problem 3 of Kreyszig p. 64. (Contributed by NM, 4-Dec-2006) (Revised by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf.x | |- X = ( Base ` G ) |
|
| nmf.n | |- N = ( norm ` G ) |
||
| nmmtri.m | |- .- = ( -g ` G ) |
||
| Assertion | nmrtri | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( abs ` ( ( N ` A ) - ( N ` B ) ) ) <_ ( N ` ( A .- B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf.x | |- X = ( Base ` G ) |
|
| 2 | nmf.n | |- N = ( norm ` G ) |
|
| 3 | nmmtri.m | |- .- = ( -g ` G ) |
|
| 4 | ngpms | |- ( G e. NrmGrp -> G e. MetSp ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> G e. MetSp ) |
| 6 | simp2 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> A e. X ) |
|
| 7 | simp3 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> B e. X ) |
|
| 8 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) |
|
| 9 | 8 | 3ad2ant1 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> G e. Grp ) |
| 10 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 11 | 1 10 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. X ) |
| 12 | 9 11 | syl | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( 0g ` G ) e. X ) |
| 13 | eqid | |- ( dist ` G ) = ( dist ` G ) |
|
| 14 | 1 13 | msrtri | |- ( ( G e. MetSp /\ ( A e. X /\ B e. X /\ ( 0g ` G ) e. X ) ) -> ( abs ` ( ( A ( dist ` G ) ( 0g ` G ) ) - ( B ( dist ` G ) ( 0g ` G ) ) ) ) <_ ( A ( dist ` G ) B ) ) |
| 15 | 5 6 7 12 14 | syl13anc | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( abs ` ( ( A ( dist ` G ) ( 0g ` G ) ) - ( B ( dist ` G ) ( 0g ` G ) ) ) ) <_ ( A ( dist ` G ) B ) ) |
| 16 | 2 1 10 13 | nmval | |- ( A e. X -> ( N ` A ) = ( A ( dist ` G ) ( 0g ` G ) ) ) |
| 17 | 16 | 3ad2ant2 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` A ) = ( A ( dist ` G ) ( 0g ` G ) ) ) |
| 18 | 2 1 10 13 | nmval | |- ( B e. X -> ( N ` B ) = ( B ( dist ` G ) ( 0g ` G ) ) ) |
| 19 | 18 | 3ad2ant3 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` B ) = ( B ( dist ` G ) ( 0g ` G ) ) ) |
| 20 | 17 19 | oveq12d | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( N ` A ) - ( N ` B ) ) = ( ( A ( dist ` G ) ( 0g ` G ) ) - ( B ( dist ` G ) ( 0g ` G ) ) ) ) |
| 21 | 20 | fveq2d | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( abs ` ( ( N ` A ) - ( N ` B ) ) ) = ( abs ` ( ( A ( dist ` G ) ( 0g ` G ) ) - ( B ( dist ` G ) ( 0g ` G ) ) ) ) ) |
| 22 | 2 1 3 13 | ngpds | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A ( dist ` G ) B ) = ( N ` ( A .- B ) ) ) |
| 23 | 22 | eqcomd | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` ( A .- B ) ) = ( A ( dist ` G ) B ) ) |
| 24 | 15 21 23 | 3brtr4d | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( abs ` ( ( N ` A ) - ( N ` B ) ) ) <_ ( N ` ( A .- B ) ) ) |