This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mscl.x | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
| mscl.d | ⊢ 𝐷 = ( dist ‘ 𝑀 ) | ||
| Assertion | msrtri | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) ≤ ( 𝐴 𝐷 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mscl.x | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
| 2 | mscl.d | ⊢ 𝐷 = ( dist ‘ 𝑀 ) | |
| 3 | 1 2 | msmet2 | ⊢ ( 𝑀 ∈ MetSp → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) ) |
| 4 | metrtri | ⊢ ( ( ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( abs ‘ ( ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) − ( 𝐵 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) ) ) ≤ ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) ) | |
| 5 | 3 4 | sylan | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( abs ‘ ( ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) − ( 𝐵 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) ) ) ≤ ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) ) |
| 6 | simpr1 | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 7 | simpr3 | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐶 ∈ 𝑋 ) | |
| 8 | 6 7 | ovresd | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) = ( 𝐴 𝐷 𝐶 ) ) |
| 9 | simpr2 | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 10 | 9 7 | ovresd | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) = ( 𝐵 𝐷 𝐶 ) ) |
| 11 | 8 10 | oveq12d | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) − ( 𝐵 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) ) = ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( abs ‘ ( ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) − ( 𝐵 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) ) ) = ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) ) |
| 13 | 6 9 | ovresd | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) |
| 14 | 5 12 13 | 3brtr3d | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) ≤ ( 𝐴 𝐷 𝐵 ) ) |