This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set in the supremum of the operator norm definition df-nmop is a set of reals. (Contributed by NM, 2-Feb-2006) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopsetretALT | ⊢ ( 𝑇 : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) | |
| 2 | normcl | ⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
| 4 | eleq1 | ⊢ ( 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) → ( 𝑥 ∈ ℝ ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) ) | |
| 5 | 3 4 | imbitrrid | ⊢ ( 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) → ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → 𝑥 ∈ ℝ ) ) |
| 6 | 5 | impcom | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) → 𝑥 ∈ ℝ ) |
| 7 | 6 | adantrl | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) → 𝑥 ∈ ℝ ) |
| 8 | 7 | exp31 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑦 ∈ ℋ → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) → 𝑥 ∈ ℝ ) ) ) |
| 9 | 8 | rexlimdv | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) → 𝑥 ∈ ℝ ) ) |
| 10 | 9 | abssdv | ⊢ ( 𝑇 : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) |