This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a vector equals the norm of its negative. (Contributed by NM, 23-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | normneg | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( - 1 ·ℎ 𝐴 ) ) = ( normℎ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 2 | normsub | ⊢ ( ( 0ℎ ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( 0ℎ −ℎ 𝐴 ) ) = ( normℎ ‘ ( 𝐴 −ℎ 0ℎ ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 0ℎ −ℎ 𝐴 ) ) = ( normℎ ‘ ( 𝐴 −ℎ 0ℎ ) ) ) |
| 4 | hv2neg | ⊢ ( 𝐴 ∈ ℋ → ( 0ℎ −ℎ 𝐴 ) = ( - 1 ·ℎ 𝐴 ) ) | |
| 5 | 4 | fveq2d | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 0ℎ −ℎ 𝐴 ) ) = ( normℎ ‘ ( - 1 ·ℎ 𝐴 ) ) ) |
| 6 | hvsub0 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 0ℎ ) = 𝐴 ) | |
| 7 | 6 | fveq2d | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝐴 −ℎ 0ℎ ) ) = ( normℎ ‘ 𝐴 ) ) |
| 8 | 3 5 7 | 3eqtr3d | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( - 1 ·ℎ 𝐴 ) ) = ( normℎ ‘ 𝐴 ) ) |