This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the norm of an adjoint. Part of proof of Theorem 3.10 of Beran p. 104. (Contributed by NM, 22-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmopadjle.1 | |- T e. BndLinOp |
|
| Assertion | nmopadjlei | |- ( A e. ~H -> ( normh ` ( ( adjh ` T ) ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmopadjle.1 | |- T e. BndLinOp |
|
| 2 | bdopssadj | |- BndLinOp C_ dom adjh |
|
| 3 | 2 1 | sselii | |- T e. dom adjh |
| 4 | adjvalval | |- ( ( T e. dom adjh /\ A e. ~H ) -> ( ( adjh ` T ) ` A ) = ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih A ) = ( v .ih f ) ) ) |
|
| 5 | 3 4 | mpan | |- ( A e. ~H -> ( ( adjh ` T ) ` A ) = ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih A ) = ( v .ih f ) ) ) |
| 6 | oveq2 | |- ( z = A -> ( ( T ` v ) .ih z ) = ( ( T ` v ) .ih A ) ) |
|
| 7 | 6 | eqeq1d | |- ( z = A -> ( ( ( T ` v ) .ih z ) = ( v .ih f ) <-> ( ( T ` v ) .ih A ) = ( v .ih f ) ) ) |
| 8 | 7 | ralbidv | |- ( z = A -> ( A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) <-> A. v e. ~H ( ( T ` v ) .ih A ) = ( v .ih f ) ) ) |
| 9 | 8 | riotabidv | |- ( z = A -> ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) = ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih A ) = ( v .ih f ) ) ) |
| 10 | eqid | |- ( z e. ~H |-> ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) ) = ( z e. ~H |-> ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) ) |
|
| 11 | riotaex | |- ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih A ) = ( v .ih f ) ) e. _V |
|
| 12 | 9 10 11 | fvmpt | |- ( A e. ~H -> ( ( z e. ~H |-> ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) ) ` A ) = ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih A ) = ( v .ih f ) ) ) |
| 13 | 5 12 | eqtr4d | |- ( A e. ~H -> ( ( adjh ` T ) ` A ) = ( ( z e. ~H |-> ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) ) ` A ) ) |
| 14 | 13 | fveq2d | |- ( A e. ~H -> ( normh ` ( ( adjh ` T ) ` A ) ) = ( normh ` ( ( z e. ~H |-> ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) ) ` A ) ) ) |
| 15 | inss1 | |- ( LinOp i^i ContOp ) C_ LinOp |
|
| 16 | lncnbd | |- ( LinOp i^i ContOp ) = BndLinOp |
|
| 17 | 1 16 | eleqtrri | |- T e. ( LinOp i^i ContOp ) |
| 18 | 15 17 | sselii | |- T e. LinOp |
| 19 | inss2 | |- ( LinOp i^i ContOp ) C_ ContOp |
|
| 20 | 19 17 | sselii | |- T e. ContOp |
| 21 | eqid | |- ( g e. ~H |-> ( ( T ` g ) .ih z ) ) = ( g e. ~H |-> ( ( T ` g ) .ih z ) ) |
|
| 22 | oveq2 | |- ( f = w -> ( v .ih f ) = ( v .ih w ) ) |
|
| 23 | 22 | eqeq2d | |- ( f = w -> ( ( ( T ` v ) .ih z ) = ( v .ih f ) <-> ( ( T ` v ) .ih z ) = ( v .ih w ) ) ) |
| 24 | 23 | ralbidv | |- ( f = w -> ( A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) <-> A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih w ) ) ) |
| 25 | 24 | cbvriotavw | |- ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) = ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih w ) ) |
| 26 | 18 20 21 25 10 | cnlnadjlem7 | |- ( A e. ~H -> ( normh ` ( ( z e. ~H |-> ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) ) ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 27 | 14 26 | eqbrtrd | |- ( A e. ~H -> ( normh ` ( ( adjh ` T ) ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |