This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the norm of an adjoint. Theorem 3.11(v) of Beran p. 106. (Contributed by NM, 22-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmopadjle.1 | |- T e. BndLinOp |
|
| Assertion | nmopadji | |- ( normop ` ( adjh ` T ) ) = ( normop ` T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmopadjle.1 | |- T e. BndLinOp |
|
| 2 | 1 | nmopadjlem | |- ( normop ` ( adjh ` T ) ) <_ ( normop ` T ) |
| 3 | bdopadj | |- ( T e. BndLinOp -> T e. dom adjh ) |
|
| 4 | 1 3 | ax-mp | |- T e. dom adjh |
| 5 | adjadj | |- ( T e. dom adjh -> ( adjh ` ( adjh ` T ) ) = T ) |
|
| 6 | 4 5 | ax-mp | |- ( adjh ` ( adjh ` T ) ) = T |
| 7 | 6 | fveq2i | |- ( normop ` ( adjh ` ( adjh ` T ) ) ) = ( normop ` T ) |
| 8 | adjbdln | |- ( T e. BndLinOp -> ( adjh ` T ) e. BndLinOp ) |
|
| 9 | 1 8 | ax-mp | |- ( adjh ` T ) e. BndLinOp |
| 10 | 9 | nmopadjlem | |- ( normop ` ( adjh ` ( adjh ` T ) ) ) <_ ( normop ` ( adjh ` T ) ) |
| 11 | 7 10 | eqbrtrri | |- ( normop ` T ) <_ ( normop ` ( adjh ` T ) ) |
| 12 | nmopre | |- ( ( adjh ` T ) e. BndLinOp -> ( normop ` ( adjh ` T ) ) e. RR ) |
|
| 13 | 9 12 | ax-mp | |- ( normop ` ( adjh ` T ) ) e. RR |
| 14 | nmopre | |- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
|
| 15 | 1 14 | ax-mp | |- ( normop ` T ) e. RR |
| 16 | 13 15 | letri3i | |- ( ( normop ` ( adjh ` T ) ) = ( normop ` T ) <-> ( ( normop ` ( adjh ` T ) ) <_ ( normop ` T ) /\ ( normop ` T ) <_ ( normop ` ( adjh ` T ) ) ) ) |
| 17 | 2 11 16 | mpbir2an | |- ( normop ` ( adjh ` T ) ) = ( normop ` T ) |