This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of any operator on the trivial Hilbert space is zero. (This is the reason we need ~H =/= 0H in nmopun .) (Contributed by NM, 24-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmop0h |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ch0 | ||
| 2 | 1 | eqeq2i | |
| 3 | feq3 | ||
| 4 | 2 3 | sylbi | |
| 5 | ax-hv0cl | ||
| 6 | 5 | elexi | |
| 7 | 6 | fconst2 | |
| 8 | df0op2 | ||
| 9 | 1 | xpeq2i | |
| 10 | 8 9 | eqtri | |
| 11 | 10 | eqeq2i | |
| 12 | 7 11 | bitr4i | |
| 13 | 4 12 | bitrdi | |
| 14 | 13 | biimpa | |
| 15 | 14 | fveq2d | |
| 16 | nmop0 | ||
| 17 | 15 16 | eqtrdi |