This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of any operator on the trivial Hilbert space is zero. (This is the reason we need ~H =/= 0H in nmopun .) (Contributed by NM, 24-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmop0h | |- ( ( ~H = 0H /\ T : ~H --> ~H ) -> ( normop ` T ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ch0 | |- 0H = { 0h } |
|
| 2 | 1 | eqeq2i | |- ( ~H = 0H <-> ~H = { 0h } ) |
| 3 | feq3 | |- ( ~H = { 0h } -> ( T : ~H --> ~H <-> T : ~H --> { 0h } ) ) |
|
| 4 | 2 3 | sylbi | |- ( ~H = 0H -> ( T : ~H --> ~H <-> T : ~H --> { 0h } ) ) |
| 5 | ax-hv0cl | |- 0h e. ~H |
|
| 6 | 5 | elexi | |- 0h e. _V |
| 7 | 6 | fconst2 | |- ( T : ~H --> { 0h } <-> T = ( ~H X. { 0h } ) ) |
| 8 | df0op2 | |- 0hop = ( ~H X. 0H ) |
|
| 9 | 1 | xpeq2i | |- ( ~H X. 0H ) = ( ~H X. { 0h } ) |
| 10 | 8 9 | eqtri | |- 0hop = ( ~H X. { 0h } ) |
| 11 | 10 | eqeq2i | |- ( T = 0hop <-> T = ( ~H X. { 0h } ) ) |
| 12 | 7 11 | bitr4i | |- ( T : ~H --> { 0h } <-> T = 0hop ) |
| 13 | 4 12 | bitrdi | |- ( ~H = 0H -> ( T : ~H --> ~H <-> T = 0hop ) ) |
| 14 | 13 | biimpa | |- ( ( ~H = 0H /\ T : ~H --> ~H ) -> T = 0hop ) |
| 15 | 14 | fveq2d | |- ( ( ~H = 0H /\ T : ~H --> ~H ) -> ( normop ` T ) = ( normop ` 0hop ) ) |
| 16 | nmop0 | |- ( normop ` 0hop ) = 0 |
|
| 17 | 15 16 | eqtrdi | |- ( ( ~H = 0H /\ T : ~H --> ~H ) -> ( normop ` T ) = 0 ) |