This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of Hilbert space zero operator. (Contributed by NM, 7-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df0op2 | ⊢ 0hop = ( ℋ × 0ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ho0f | ⊢ 0hop : ℋ ⟶ ℋ | |
| 2 | ffn | ⊢ ( 0hop : ℋ ⟶ ℋ → 0hop Fn ℋ ) | |
| 3 | 1 2 | ax-mp | ⊢ 0hop Fn ℋ |
| 4 | ho0val | ⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) | |
| 5 | 4 | rgen | ⊢ ∀ 𝑥 ∈ ℋ ( 0hop ‘ 𝑥 ) = 0ℎ |
| 6 | fconstfv | ⊢ ( 0hop : ℋ ⟶ { 0ℎ } ↔ ( 0hop Fn ℋ ∧ ∀ 𝑥 ∈ ℋ ( 0hop ‘ 𝑥 ) = 0ℎ ) ) | |
| 7 | 3 5 6 | mpbir2an | ⊢ 0hop : ℋ ⟶ { 0ℎ } |
| 8 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 9 | 8 | elexi | ⊢ 0ℎ ∈ V |
| 10 | 9 | fconst2 | ⊢ ( 0hop : ℋ ⟶ { 0ℎ } ↔ 0hop = ( ℋ × { 0ℎ } ) ) |
| 11 | 7 10 | mpbi | ⊢ 0hop = ( ℋ × { 0ℎ } ) |
| 12 | df-ch0 | ⊢ 0ℋ = { 0ℎ } | |
| 13 | 12 | xpeq2i | ⊢ ( ℋ × 0ℋ ) = ( ℋ × { 0ℎ } ) |
| 14 | 11 13 | eqtr4i | ⊢ 0hop = ( ℋ × 0ℋ ) |