This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm is the supremum of the value of a linear operator on the unit sphere. (Contributed by Mario Carneiro, 19-Oct-2015) (Proof shortened by AV, 29-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoleub2.n | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| nmoleub2.v | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | ||
| nmoleub2.l | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | ||
| nmoleub2.m | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | ||
| nmoleub2.g | ⊢ 𝐺 = ( Scalar ‘ 𝑆 ) | ||
| nmoleub2.w | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | ||
| nmoleub2.s | ⊢ ( 𝜑 → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) | ||
| nmoleub2.t | ⊢ ( 𝜑 → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) | ||
| nmoleub2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) | ||
| nmoleub2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | ||
| nmoleub2.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| nmoleub3.5 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| nmoleub3.6 | ⊢ ( 𝜑 → ℝ ⊆ 𝐾 ) | ||
| Assertion | nmoleub3 | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoleub2.n | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | nmoleub2.v | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | |
| 3 | nmoleub2.l | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | |
| 4 | nmoleub2.m | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | |
| 5 | nmoleub2.g | ⊢ 𝐺 = ( Scalar ‘ 𝑆 ) | |
| 6 | nmoleub2.w | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | |
| 7 | nmoleub2.s | ⊢ ( 𝜑 → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) | |
| 8 | nmoleub2.t | ⊢ ( 𝜑 → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) | |
| 9 | nmoleub2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) | |
| 10 | nmoleub2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 11 | nmoleub2.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 12 | nmoleub3.5 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 13 | nmoleub3.6 | ⊢ ( 𝜑 → ℝ ⊆ 𝐾 ) | |
| 14 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 0 ≤ 𝐴 ) |
| 15 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 16 | 13 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ℝ ⊆ 𝐾 ) |
| 17 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑅 ∈ ℝ+ ) |
| 18 | 7 | elin1d | ⊢ ( 𝜑 → 𝑆 ∈ NrmMod ) |
| 19 | 18 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑆 ∈ NrmMod ) |
| 20 | nlmngp | ⊢ ( 𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp ) | |
| 21 | 19 20 | syl | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑆 ∈ NrmGrp ) |
| 22 | simprl | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑦 ∈ 𝑉 ) | |
| 23 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑦 ≠ ( 0g ‘ 𝑆 ) ) | |
| 24 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 25 | 2 3 24 | nmrpcl | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝐿 ‘ 𝑦 ) ∈ ℝ+ ) |
| 26 | 21 22 23 25 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐿 ‘ 𝑦 ) ∈ ℝ+ ) |
| 27 | 17 26 | rpdivcld | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ ℝ+ ) |
| 28 | 27 | rpred | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ ℝ ) |
| 29 | 16 28 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ 𝐾 ) |
| 30 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 31 | eqid | ⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) | |
| 32 | 5 6 2 30 31 | lmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) → ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 33 | 15 29 22 32 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 34 | 33 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) = ( 𝑀 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 35 | 8 | elin1d | ⊢ ( 𝜑 → 𝑇 ∈ NrmMod ) |
| 36 | 35 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑇 ∈ NrmMod ) |
| 37 | eqid | ⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) | |
| 38 | 5 37 | lmhmsca | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = 𝐺 ) |
| 39 | 15 38 | syl | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( Scalar ‘ 𝑇 ) = 𝐺 ) |
| 40 | 39 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ 𝐺 ) ) |
| 41 | 40 6 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑇 ) ) = 𝐾 ) |
| 42 | 29 41 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 43 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 44 | 2 43 | lmhmf | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 45 | 15 44 | syl | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 46 | 45 22 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) |
| 47 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) | |
| 48 | eqid | ⊢ ( norm ‘ ( Scalar ‘ 𝑇 ) ) = ( norm ‘ ( Scalar ‘ 𝑇 ) ) | |
| 49 | 43 4 31 37 47 48 | nmvs | ⊢ ( ( 𝑇 ∈ NrmMod ∧ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝑀 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 50 | 36 42 46 49 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 51 | 39 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( norm ‘ ( Scalar ‘ 𝑇 ) ) = ( norm ‘ 𝐺 ) ) |
| 52 | 51 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) ) |
| 53 | 7 | elin2d | ⊢ ( 𝜑 → 𝑆 ∈ ℂMod ) |
| 54 | 53 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑆 ∈ ℂMod ) |
| 55 | 5 6 | clmabs | ⊢ ( ( 𝑆 ∈ ℂMod ∧ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ 𝐾 ) → ( abs ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) ) |
| 56 | 54 29 55 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( abs ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) ) |
| 57 | 27 | rpge0d | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 0 ≤ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) |
| 58 | 28 57 | absidd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( abs ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) |
| 59 | 56 58 | eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) |
| 60 | 52 59 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) |
| 61 | 60 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 62 | 34 50 61 | 3eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 63 | 62 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) = ( ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) / 𝑅 ) ) |
| 64 | 27 | rpcnd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ ℂ ) |
| 65 | nlmngp | ⊢ ( 𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp ) | |
| 66 | 36 65 | syl | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑇 ∈ NrmGrp ) |
| 67 | 43 4 | nmcl | ⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 68 | 66 46 67 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 69 | 68 | recnd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℂ ) |
| 70 | 17 | rpcnd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑅 ∈ ℂ ) |
| 71 | 17 | rpne0d | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑅 ≠ 0 ) |
| 72 | 64 69 70 71 | divassd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) / 𝑅 ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / 𝑅 ) ) ) |
| 73 | 26 | rpcnd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐿 ‘ 𝑦 ) ∈ ℂ ) |
| 74 | 26 | rpne0d | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐿 ‘ 𝑦 ) ≠ 0 ) |
| 75 | 69 70 73 71 74 | dmdcand | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / 𝑅 ) ) = ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / ( 𝐿 ‘ 𝑦 ) ) ) |
| 76 | 63 72 75 | 3eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) = ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / ( 𝐿 ‘ 𝑦 ) ) ) |
| 77 | eqid | ⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) | |
| 78 | 2 3 30 5 6 77 | nmvs | ⊢ ( ( 𝑆 ∈ NrmMod ∧ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) → ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝐿 ‘ 𝑦 ) ) ) |
| 79 | 19 29 22 78 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝐿 ‘ 𝑦 ) ) ) |
| 80 | 59 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝐿 ‘ 𝑦 ) ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝐿 ‘ 𝑦 ) ) ) |
| 81 | 70 73 74 | divcan1d | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝐿 ‘ 𝑦 ) ) = 𝑅 ) |
| 82 | 79 80 81 | 3eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = 𝑅 ) |
| 83 | fveqeq2 | ⊢ ( 𝑥 = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( 𝐿 ‘ 𝑥 ) = 𝑅 ↔ ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = 𝑅 ) ) | |
| 84 | 2fveq3 | ⊢ ( 𝑥 = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) ) | |
| 85 | 84 | oveq1d | ⊢ ( 𝑥 = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) = ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ) |
| 86 | 85 | breq1d | ⊢ ( 𝑥 = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ↔ ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) |
| 87 | 83 86 | imbi12d | ⊢ ( 𝑥 = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ↔ ( ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
| 88 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) | |
| 89 | 2 5 30 6 | clmvscl | ⊢ ( ( 𝑆 ∈ ℂMod ∧ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ 𝑉 ) |
| 90 | 54 29 22 89 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ 𝑉 ) |
| 91 | 87 88 90 | rspcdva | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) |
| 92 | 82 91 | mpd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) |
| 93 | 76 92 | eqbrtrrd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / ( 𝐿 ‘ 𝑦 ) ) ≤ 𝐴 ) |
| 94 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐴 ∈ ℝ ) | |
| 95 | 68 94 26 | ledivmul2d | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / ( 𝐿 ‘ 𝑦 ) ) ≤ 𝐴 ↔ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) ) |
| 96 | 93 95 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) |
| 97 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑅 ∈ ℝ+ ) |
| 98 | 97 | rpred | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑅 ∈ ℝ ) |
| 99 | 98 | leidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑅 ≤ 𝑅 ) |
| 100 | breq1 | ⊢ ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ↔ 𝑅 ≤ 𝑅 ) ) | |
| 101 | 99 100 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) |
| 102 | 1 2 3 4 5 6 7 8 9 10 11 14 96 101 | nmoleub2lem | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |