This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any upper bound on the values of a linear operator translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015) (Proof shortened by AV, 26-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| nmofval.2 | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | ||
| nmofval.3 | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | ||
| nmofval.4 | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | ||
| Assertion | nmolb | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | nmofval.2 | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | |
| 3 | nmofval.3 | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | |
| 4 | nmofval.4 | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | |
| 5 | elrege0 | ⊢ ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) | |
| 6 | 1 2 3 4 | nmoval | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) |
| 7 | ssrab2 | ⊢ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } ⊆ ( 0 [,) +∞ ) | |
| 8 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 9 | 7 8 | sstri | ⊢ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } ⊆ ℝ* |
| 10 | infxrcl | ⊢ ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } ⊆ ℝ* → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ∈ ℝ* ) | |
| 11 | 9 10 | mp1i | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ∈ ℝ* ) |
| 12 | 6 11 | eqeltrd | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 13 | 12 | xrleidd | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ ( 𝑁 ‘ 𝐹 ) ) |
| 14 | 1 2 3 4 | nmogelb | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) → ( ( 𝑁 ‘ 𝐹 ) ≤ ( 𝑁 ‘ 𝐹 ) ↔ ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝑟 ) ) ) |
| 15 | 12 14 | mpdan | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( ( 𝑁 ‘ 𝐹 ) ≤ ( 𝑁 ‘ 𝐹 ) ↔ ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝑟 ) ) ) |
| 16 | 13 15 | mpbid | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝑟 ) ) |
| 17 | oveq1 | ⊢ ( 𝑟 = 𝐴 → ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) | |
| 18 | 17 | breq2d | ⊢ ( 𝑟 = 𝐴 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ↔ ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) ) |
| 19 | 18 | ralbidv | ⊢ ( 𝑟 = 𝐴 → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) ) |
| 20 | breq2 | ⊢ ( 𝑟 = 𝐴 → ( ( 𝑁 ‘ 𝐹 ) ≤ 𝑟 ↔ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) | |
| 21 | 19 20 | imbi12d | ⊢ ( 𝑟 = 𝐴 → ( ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝑟 ) ↔ ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) ) |
| 22 | 21 | rspccv | ⊢ ( ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝑟 ) → ( 𝐴 ∈ ( 0 [,) +∞ ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) ) |
| 23 | 16 22 | syl | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐴 ∈ ( 0 [,) +∞ ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) ) |
| 24 | 5 23 | biimtrrid | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) ) |
| 25 | 24 | 3impib | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) |