This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a Hilbert space functional is either real or plus infinity. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmfnrepnf | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ( normfn ‘ 𝑇 ) ∈ ℝ ↔ ( normfn ‘ 𝑇 ) ≠ +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmfnsetre | ⊢ ( 𝑇 : ℋ ⟶ ℂ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) | |
| 2 | nmfnsetn0 | ⊢ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } | |
| 3 | 2 | ne0ii | ⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ≠ ∅ |
| 4 | supxrre2 | ⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ∧ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ≠ ∅ ) → ( sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ∈ ℝ ↔ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ≠ +∞ ) ) | |
| 5 | 1 3 4 | sylancl | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ∈ ℝ ↔ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ≠ +∞ ) ) |
| 6 | nmfnval | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( normfn ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ( normfn ‘ 𝑇 ) ∈ ℝ ↔ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ∈ ℝ ) ) |
| 8 | 6 | neeq1d | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ( normfn ‘ 𝑇 ) ≠ +∞ ↔ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ≠ +∞ ) ) |
| 9 | 5 7 8 | 3bitr4d | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ( normfn ‘ 𝑇 ) ∈ ℝ ↔ ( normfn ‘ 𝑇 ) ≠ +∞ ) ) |