This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm on a metric group is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf2.n | ||
| nmf2.x | |||
| nmf2.d | |||
| nmf2.e | |||
| Assertion | nmf2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf2.n | ||
| 2 | nmf2.x | ||
| 3 | nmf2.d | ||
| 4 | nmf2.e | ||
| 5 | eqid | ||
| 6 | 1 2 5 3 4 | nmfval2 | |
| 7 | 6 | adantr | |
| 8 | 2 5 | grpidcl | |
| 9 | metcl | ||
| 10 | 9 | 3comr | |
| 11 | 8 10 | syl3an1 | |
| 12 | 11 | 3expa | |
| 13 | 7 12 | fmpt3d |