This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm on a metric group is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf2.n | |- N = ( norm ` W ) |
|
| nmf2.x | |- X = ( Base ` W ) |
||
| nmf2.d | |- D = ( dist ` W ) |
||
| nmf2.e | |- E = ( D |` ( X X. X ) ) |
||
| Assertion | nmf2 | |- ( ( W e. Grp /\ E e. ( Met ` X ) ) -> N : X --> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf2.n | |- N = ( norm ` W ) |
|
| 2 | nmf2.x | |- X = ( Base ` W ) |
|
| 3 | nmf2.d | |- D = ( dist ` W ) |
|
| 4 | nmf2.e | |- E = ( D |` ( X X. X ) ) |
|
| 5 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 6 | 1 2 5 3 4 | nmfval2 | |- ( W e. Grp -> N = ( x e. X |-> ( x E ( 0g ` W ) ) ) ) |
| 7 | 6 | adantr | |- ( ( W e. Grp /\ E e. ( Met ` X ) ) -> N = ( x e. X |-> ( x E ( 0g ` W ) ) ) ) |
| 8 | 2 5 | grpidcl | |- ( W e. Grp -> ( 0g ` W ) e. X ) |
| 9 | metcl | |- ( ( E e. ( Met ` X ) /\ x e. X /\ ( 0g ` W ) e. X ) -> ( x E ( 0g ` W ) ) e. RR ) |
|
| 10 | 9 | 3comr | |- ( ( ( 0g ` W ) e. X /\ E e. ( Met ` X ) /\ x e. X ) -> ( x E ( 0g ` W ) ) e. RR ) |
| 11 | 8 10 | syl3an1 | |- ( ( W e. Grp /\ E e. ( Met ` X ) /\ x e. X ) -> ( x E ( 0g ` W ) ) e. RR ) |
| 12 | 11 | 3expa | |- ( ( ( W e. Grp /\ E e. ( Met ` X ) ) /\ x e. X ) -> ( x E ( 0g ` W ) ) e. RR ) |
| 13 | 7 12 | fmpt3d | |- ( ( W e. Grp /\ E e. ( Met ` X ) ) -> N : X --> RR ) |