This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two elements are the same distance apart as their inverses. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngpinvds.x | |- X = ( Base ` G ) |
|
| ngpinvds.i | |- I = ( invg ` G ) |
||
| ngpinvds.d | |- D = ( dist ` G ) |
||
| Assertion | ngpinvds | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X ) ) -> ( ( I ` A ) D ( I ` B ) ) = ( A D B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpinvds.x | |- X = ( Base ` G ) |
|
| 2 | ngpinvds.i | |- I = ( invg ` G ) |
|
| 3 | ngpinvds.d | |- D = ( dist ` G ) |
|
| 4 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 5 | simplr | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X ) ) -> G e. Abel ) |
|
| 6 | simprr | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X ) ) -> B e. X ) |
|
| 7 | simprl | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X ) ) -> A e. X ) |
|
| 8 | 1 4 2 5 6 7 | ablsub2inv | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X ) ) -> ( ( I ` B ) ( -g ` G ) ( I ` A ) ) = ( A ( -g ` G ) B ) ) |
| 9 | 8 | fveq2d | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X ) ) -> ( ( norm ` G ) ` ( ( I ` B ) ( -g ` G ) ( I ` A ) ) ) = ( ( norm ` G ) ` ( A ( -g ` G ) B ) ) ) |
| 10 | simpll | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X ) ) -> G e. NrmGrp ) |
|
| 11 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) |
|
| 12 | 10 11 | syl | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X ) ) -> G e. Grp ) |
| 13 | 1 2 | grpinvcl | |- ( ( G e. Grp /\ A e. X ) -> ( I ` A ) e. X ) |
| 14 | 12 7 13 | syl2anc | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X ) ) -> ( I ` A ) e. X ) |
| 15 | 1 2 | grpinvcl | |- ( ( G e. Grp /\ B e. X ) -> ( I ` B ) e. X ) |
| 16 | 12 6 15 | syl2anc | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X ) ) -> ( I ` B ) e. X ) |
| 17 | eqid | |- ( norm ` G ) = ( norm ` G ) |
|
| 18 | 17 1 4 3 | ngpdsr | |- ( ( G e. NrmGrp /\ ( I ` A ) e. X /\ ( I ` B ) e. X ) -> ( ( I ` A ) D ( I ` B ) ) = ( ( norm ` G ) ` ( ( I ` B ) ( -g ` G ) ( I ` A ) ) ) ) |
| 19 | 10 14 16 18 | syl3anc | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X ) ) -> ( ( I ` A ) D ( I ` B ) ) = ( ( norm ` G ) ` ( ( I ` B ) ( -g ` G ) ( I ` A ) ) ) ) |
| 20 | 17 1 4 3 | ngpds | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( ( norm ` G ) ` ( A ( -g ` G ) B ) ) ) |
| 21 | 10 7 6 20 | syl3anc | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X ) ) -> ( A D B ) = ( ( norm ` G ) ` ( A ( -g ` G ) B ) ) ) |
| 22 | 9 19 21 | 3eqtr4d | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X ) ) -> ( ( I ` A ) D ( I ` B ) ) = ( A D B ) ) |