This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| Assertion | nghmfval | ⊢ ( 𝑆 NGHom 𝑇 ) = ( ◡ 𝑁 “ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | oveq12 | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( 𝑠 normOp 𝑡 ) = ( 𝑆 normOp 𝑇 ) ) | |
| 3 | 2 1 | eqtr4di | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( 𝑠 normOp 𝑡 ) = 𝑁 ) |
| 4 | 3 | cnveqd | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ◡ ( 𝑠 normOp 𝑡 ) = ◡ 𝑁 ) |
| 5 | 4 | imaeq1d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ◡ ( 𝑠 normOp 𝑡 ) “ ℝ ) = ( ◡ 𝑁 “ ℝ ) ) |
| 6 | df-nghm | ⊢ NGHom = ( 𝑠 ∈ NrmGrp , 𝑡 ∈ NrmGrp ↦ ( ◡ ( 𝑠 normOp 𝑡 ) “ ℝ ) ) | |
| 7 | 1 | ovexi | ⊢ 𝑁 ∈ V |
| 8 | 7 | cnvex | ⊢ ◡ 𝑁 ∈ V |
| 9 | 8 | imaex | ⊢ ( ◡ 𝑁 “ ℝ ) ∈ V |
| 10 | 5 6 9 | ovmpoa | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝑆 NGHom 𝑇 ) = ( ◡ 𝑁 “ ℝ ) ) |
| 11 | 6 | mpondm0 | ⊢ ( ¬ ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝑆 NGHom 𝑇 ) = ∅ ) |
| 12 | nmoffn | ⊢ normOp Fn ( NrmGrp × NrmGrp ) | |
| 13 | 12 | fndmi | ⊢ dom normOp = ( NrmGrp × NrmGrp ) |
| 14 | 13 | ndmov | ⊢ ( ¬ ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝑆 normOp 𝑇 ) = ∅ ) |
| 15 | 1 14 | eqtrid | ⊢ ( ¬ ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 𝑁 = ∅ ) |
| 16 | 15 | cnveqd | ⊢ ( ¬ ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ◡ 𝑁 = ◡ ∅ ) |
| 17 | cnv0 | ⊢ ◡ ∅ = ∅ | |
| 18 | 16 17 | eqtrdi | ⊢ ( ¬ ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ◡ 𝑁 = ∅ ) |
| 19 | 18 | imaeq1d | ⊢ ( ¬ ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( ◡ 𝑁 “ ℝ ) = ( ∅ “ ℝ ) ) |
| 20 | 0ima | ⊢ ( ∅ “ ℝ ) = ∅ | |
| 21 | 19 20 | eqtrdi | ⊢ ( ¬ ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( ◡ 𝑁 “ ℝ ) = ∅ ) |
| 22 | 11 21 | eqtr4d | ⊢ ( ¬ ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝑆 NGHom 𝑇 ) = ( ◡ 𝑁 “ ℝ ) ) |
| 23 | 10 22 | pm2.61i | ⊢ ( 𝑆 NGHom 𝑇 ) = ( ◡ 𝑁 “ ℝ ) |