This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmofval.1 | |- N = ( S normOp T ) |
|
| Assertion | nghmfval | |- ( S NGHom T ) = ( `' N " RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | |- N = ( S normOp T ) |
|
| 2 | oveq12 | |- ( ( s = S /\ t = T ) -> ( s normOp t ) = ( S normOp T ) ) |
|
| 3 | 2 1 | eqtr4di | |- ( ( s = S /\ t = T ) -> ( s normOp t ) = N ) |
| 4 | 3 | cnveqd | |- ( ( s = S /\ t = T ) -> `' ( s normOp t ) = `' N ) |
| 5 | 4 | imaeq1d | |- ( ( s = S /\ t = T ) -> ( `' ( s normOp t ) " RR ) = ( `' N " RR ) ) |
| 6 | df-nghm | |- NGHom = ( s e. NrmGrp , t e. NrmGrp |-> ( `' ( s normOp t ) " RR ) ) |
|
| 7 | 1 | ovexi | |- N e. _V |
| 8 | 7 | cnvex | |- `' N e. _V |
| 9 | 8 | imaex | |- ( `' N " RR ) e. _V |
| 10 | 5 6 9 | ovmpoa | |- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( S NGHom T ) = ( `' N " RR ) ) |
| 11 | 6 | mpondm0 | |- ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( S NGHom T ) = (/) ) |
| 12 | nmoffn | |- normOp Fn ( NrmGrp X. NrmGrp ) |
|
| 13 | 12 | fndmi | |- dom normOp = ( NrmGrp X. NrmGrp ) |
| 14 | 13 | ndmov | |- ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( S normOp T ) = (/) ) |
| 15 | 1 14 | eqtrid | |- ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> N = (/) ) |
| 16 | 15 | cnveqd | |- ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> `' N = `' (/) ) |
| 17 | cnv0 | |- `' (/) = (/) |
|
| 18 | 16 17 | eqtrdi | |- ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> `' N = (/) ) |
| 19 | 18 | imaeq1d | |- ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( `' N " RR ) = ( (/) " RR ) ) |
| 20 | 0ima | |- ( (/) " RR ) = (/) |
|
| 21 | 19 20 | eqtrdi | |- ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( `' N " RR ) = (/) ) |
| 22 | 11 21 | eqtr4d | |- ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( S NGHom T ) = ( `' N " RR ) ) |
| 23 | 10 22 | pm2.61i | |- ( S NGHom T ) = ( `' N " RR ) |