This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function producing operator norm functions is a function on normed groups. (Contributed by Mario Carneiro, 18-Oct-2015) (Proof shortened by AV, 26-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmoffn | ⊢ normOp Fn ( NrmGrp × NrmGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nmo | ⊢ normOp = ( 𝑠 ∈ NrmGrp , 𝑡 ∈ NrmGrp ↦ ( 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } , ℝ* , < ) ) ) | |
| 2 | eqid | ⊢ ( 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } , ℝ* , < ) ) = ( 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } , ℝ* , < ) ) | |
| 3 | ssrab2 | ⊢ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } ⊆ ( 0 [,) +∞ ) | |
| 4 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 5 | 3 4 | sstri | ⊢ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } ⊆ ℝ* |
| 6 | infxrcl | ⊢ ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } ⊆ ℝ* → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } , ℝ* , < ) ∈ ℝ* ) | |
| 7 | 5 6 | mp1i | ⊢ ( 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } , ℝ* , < ) ∈ ℝ* ) |
| 8 | 2 7 | fmpti | ⊢ ( 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } , ℝ* , < ) ) : ( 𝑠 GrpHom 𝑡 ) ⟶ ℝ* |
| 9 | ovex | ⊢ ( 𝑠 GrpHom 𝑡 ) ∈ V | |
| 10 | xrex | ⊢ ℝ* ∈ V | |
| 11 | fex2 | ⊢ ( ( ( 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } , ℝ* , < ) ) : ( 𝑠 GrpHom 𝑡 ) ⟶ ℝ* ∧ ( 𝑠 GrpHom 𝑡 ) ∈ V ∧ ℝ* ∈ V ) → ( 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } , ℝ* , < ) ) ∈ V ) | |
| 12 | 8 9 10 11 | mp3an | ⊢ ( 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } , ℝ* , < ) ) ∈ V |
| 13 | 1 12 | fnmpoi | ⊢ normOp Fn ( NrmGrp × NrmGrp ) |