This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of nfriota with a disjoint variable condition, which contrary to nfriotad does not require ax-13 . (Contributed by NM, 18-Feb-2013) Avoid ax-13 . (Revised by GG, 26-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfriotadw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| nfriotadw.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | ||
| nfriotadw.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | ||
| Assertion | nfriotadw | ⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑦 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfriotadw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | nfriotadw.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
| 3 | nfriotadw.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
| 4 | df-riota | ⊢ ( ℩ 𝑦 ∈ 𝐴 𝜓 ) = ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 5 | nfnaew | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 6 | 1 5 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 7 | nfcvd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑦 ) |
| 9 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝐴 ) |
| 10 | 8 9 | nfeld | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
| 11 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜓 ) |
| 12 | 10 11 | nfand | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
| 13 | 6 12 | nfiotadw | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 14 | 13 | ex | ⊢ ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) ) |
| 15 | nfiota1 | ⊢ Ⅎ 𝑦 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 16 | biidd | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) ) | |
| 17 | 16 | drnf1v | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( Ⅎ 𝑥 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ Ⅎ 𝑦 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) ) |
| 18 | 17 | albidv | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑤 Ⅎ 𝑥 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑤 Ⅎ 𝑦 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) ) |
| 19 | df-nfc | ⊢ ( Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑤 Ⅎ 𝑥 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) | |
| 20 | df-nfc | ⊢ ( Ⅎ 𝑦 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑤 Ⅎ 𝑦 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) | |
| 21 | 18 19 20 | 3bitr4g | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ Ⅎ 𝑦 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) ) |
| 22 | 15 21 | mpbiri | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 23 | 14 22 | pm2.61d2 | ⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 24 | 4 23 | nfcxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑦 ∈ 𝐴 𝜓 ) ) |