This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of nfriota with a disjoint variable condition, which contrary to nfriotad does not require ax-13 . (Contributed by NM, 18-Feb-2013) Avoid ax-13 . (Revised by GG, 26-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfriotadw.1 | |- F/ y ph |
|
| nfriotadw.2 | |- ( ph -> F/ x ps ) |
||
| nfriotadw.3 | |- ( ph -> F/_ x A ) |
||
| Assertion | nfriotadw | |- ( ph -> F/_ x ( iota_ y e. A ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfriotadw.1 | |- F/ y ph |
|
| 2 | nfriotadw.2 | |- ( ph -> F/ x ps ) |
|
| 3 | nfriotadw.3 | |- ( ph -> F/_ x A ) |
|
| 4 | df-riota | |- ( iota_ y e. A ps ) = ( iota y ( y e. A /\ ps ) ) |
|
| 5 | nfnaew | |- F/ y -. A. x x = y |
|
| 6 | 1 5 | nfan | |- F/ y ( ph /\ -. A. x x = y ) |
| 7 | nfcvd | |- ( -. A. x x = y -> F/_ x y ) |
|
| 8 | 7 | adantl | |- ( ( ph /\ -. A. x x = y ) -> F/_ x y ) |
| 9 | 3 | adantr | |- ( ( ph /\ -. A. x x = y ) -> F/_ x A ) |
| 10 | 8 9 | nfeld | |- ( ( ph /\ -. A. x x = y ) -> F/ x y e. A ) |
| 11 | 2 | adantr | |- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) |
| 12 | 10 11 | nfand | |- ( ( ph /\ -. A. x x = y ) -> F/ x ( y e. A /\ ps ) ) |
| 13 | 6 12 | nfiotadw | |- ( ( ph /\ -. A. x x = y ) -> F/_ x ( iota y ( y e. A /\ ps ) ) ) |
| 14 | 13 | ex | |- ( ph -> ( -. A. x x = y -> F/_ x ( iota y ( y e. A /\ ps ) ) ) ) |
| 15 | nfiota1 | |- F/_ y ( iota y ( y e. A /\ ps ) ) |
|
| 16 | biidd | |- ( A. x x = y -> ( w e. ( iota y ( y e. A /\ ps ) ) <-> w e. ( iota y ( y e. A /\ ps ) ) ) ) |
|
| 17 | 16 | drnf1v | |- ( A. x x = y -> ( F/ x w e. ( iota y ( y e. A /\ ps ) ) <-> F/ y w e. ( iota y ( y e. A /\ ps ) ) ) ) |
| 18 | 17 | albidv | |- ( A. x x = y -> ( A. w F/ x w e. ( iota y ( y e. A /\ ps ) ) <-> A. w F/ y w e. ( iota y ( y e. A /\ ps ) ) ) ) |
| 19 | df-nfc | |- ( F/_ x ( iota y ( y e. A /\ ps ) ) <-> A. w F/ x w e. ( iota y ( y e. A /\ ps ) ) ) |
|
| 20 | df-nfc | |- ( F/_ y ( iota y ( y e. A /\ ps ) ) <-> A. w F/ y w e. ( iota y ( y e. A /\ ps ) ) ) |
|
| 21 | 18 19 20 | 3bitr4g | |- ( A. x x = y -> ( F/_ x ( iota y ( y e. A /\ ps ) ) <-> F/_ y ( iota y ( y e. A /\ ps ) ) ) ) |
| 22 | 15 21 | mpbiri | |- ( A. x x = y -> F/_ x ( iota y ( y e. A /\ ps ) ) ) |
| 23 | 14 22 | pm2.61d2 | |- ( ph -> F/_ x ( iota y ( y e. A /\ ps ) ) ) |
| 24 | 4 23 | nfcxfrd | |- ( ph -> F/_ x ( iota_ y e. A ps ) ) |