This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variable in a restricted description binder. Version of cbvriota with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 18-Mar-2013) Avoid ax-13 . (Revised by GG, 26-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvriotaw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| cbvriotaw.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| cbvriotaw.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbvriotaw | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑦 ∈ 𝐴 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvriotaw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | cbvriotaw.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | cbvriotaw.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 5 | sbequ12 | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 6 | 4 5 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
| 7 | nfv | ⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) | |
| 8 | nfv | ⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴 | |
| 9 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 | |
| 10 | 8 9 | nfan | ⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) |
| 11 | 6 7 10 | cbviotaw | ⊢ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = ( ℩ 𝑧 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 12 | eleq1w | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 13 | 2 3 | sbhypf | ⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 14 | 12 13 | anbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 15 | nfv | ⊢ Ⅎ 𝑦 𝑧 ∈ 𝐴 | |
| 16 | 1 | nfsbv | ⊢ Ⅎ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 |
| 17 | 15 16 | nfan | ⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) |
| 18 | nfv | ⊢ Ⅎ 𝑧 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) | |
| 19 | 14 17 18 | cbviotaw | ⊢ ( ℩ 𝑧 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) = ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
| 20 | 11 19 | eqtri | ⊢ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
| 21 | df-riota | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 22 | df-riota | ⊢ ( ℩ 𝑦 ∈ 𝐴 𝜓 ) = ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 23 | 20 21 22 | 3eqtr4i | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑦 ∈ 𝐴 𝜓 ) |