This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of nfiotaw . Version of nfiotad with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 18-Feb-2013) Avoid ax-13 . (Revised by GG, 26-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfiotadw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| nfiotadw.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | ||
| Assertion | nfiotadw | ⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑦 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfiotadw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | nfiotadw.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
| 3 | dfiota2 | ⊢ ( ℩ 𝑦 𝜓 ) = ∪ { 𝑧 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑧 ) } | |
| 4 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
| 5 | nfvd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 = 𝑧 ) | |
| 6 | 2 5 | nfbid | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝜓 ↔ 𝑦 = 𝑧 ) ) |
| 7 | 1 6 | nfald | ⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑧 ) ) |
| 8 | 4 7 | nfabdw | ⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑧 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑧 ) } ) |
| 9 | 8 | nfunid | ⊢ ( 𝜑 → Ⅎ 𝑥 ∪ { 𝑧 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑧 ) } ) |
| 10 | 3 9 | nfcxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑦 𝜓 ) ) |