This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction form of nfif . (Contributed by NM, 15-Feb-2013) (Revised by Mario Carneiro, 13-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfifd.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
| nfifd.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | ||
| nfifd.4 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | ||
| Assertion | nfifd | ⊢ ( 𝜑 → Ⅎ 𝑥 if ( 𝜓 , 𝐴 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfifd.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
| 2 | nfifd.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
| 3 | nfifd.4 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | |
| 4 | dfif2 | ⊢ if ( 𝜓 , 𝐴 , 𝐵 ) = { 𝑦 ∣ ( ( 𝑦 ∈ 𝐵 → 𝜓 ) → ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) } | |
| 5 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 6 | 3 | nfcrd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐵 ) |
| 7 | 6 1 | nfimd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑦 ∈ 𝐵 → 𝜓 ) ) |
| 8 | 2 | nfcrd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
| 9 | 8 1 | nfand | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
| 10 | 7 9 | nfimd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( ( 𝑦 ∈ 𝐵 → 𝜓 ) → ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 11 | 5 10 | nfabdw | ⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑦 ∣ ( ( 𝑦 ∈ 𝐵 → 𝜓 ) → ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) } ) |
| 12 | 4 11 | nfcxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 if ( 𝜓 , 𝐴 , 𝐵 ) ) |