This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Deduction form of nfif . (Contributed by NM, 15-Feb-2013) (Revised by Mario Carneiro, 13-Oct-2016)
|
|
Ref |
Expression |
|
Hypotheses |
nfifd.2 |
|
|
|
nfifd.3 |
|
|
|
nfifd.4 |
|
|
Assertion |
nfifd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfifd.2 |
|
| 2 |
|
nfifd.3 |
|
| 3 |
|
nfifd.4 |
|
| 4 |
|
dfif2 |
|
| 5 |
|
nfv |
|
| 6 |
3
|
nfcrd |
|
| 7 |
6 1
|
nfimd |
|
| 8 |
2
|
nfcrd |
|
| 9 |
8 1
|
nfand |
|
| 10 |
7 9
|
nfimd |
|
| 11 |
5 10
|
nfabdw |
|
| 12 |
4 11
|
nfcxfrd |
|