This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate definition of the conditional operator df-if with one fewer connectives (but probably less intuitive to understand). (Contributed by NM, 30-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfif2 | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = { 𝑥 ∣ ( ( 𝑥 ∈ 𝐵 → 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = { 𝑥 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∨ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝜑 ) ) } | |
| 2 | df-or | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝜑 ) ∨ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ( ¬ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 3 | orcom | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∨ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝜑 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝜑 ) ∨ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 4 | iman | ⊢ ( ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ¬ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝜑 ) ) | |
| 5 | 4 | imbi1i | ⊢ ( ( ( 𝑥 ∈ 𝐵 → 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ( ¬ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 6 | 2 3 5 | 3bitr4i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∨ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝜑 ) ) ↔ ( ( 𝑥 ∈ 𝐵 → 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 7 | 6 | abbii | ⊢ { 𝑥 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∨ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝜑 ) ) } = { 𝑥 ∣ ( ( 𝑥 ∈ 𝐵 → 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) } |
| 8 | 1 7 | eqtri | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = { 𝑥 ∣ ( ( 𝑥 ∈ 𝐵 → 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) } |