This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction form of nfif . (Contributed by NM, 15-Feb-2013) (Revised by Mario Carneiro, 13-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfifd.2 | |- ( ph -> F/ x ps ) |
|
| nfifd.3 | |- ( ph -> F/_ x A ) |
||
| nfifd.4 | |- ( ph -> F/_ x B ) |
||
| Assertion | nfifd | |- ( ph -> F/_ x if ( ps , A , B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfifd.2 | |- ( ph -> F/ x ps ) |
|
| 2 | nfifd.3 | |- ( ph -> F/_ x A ) |
|
| 3 | nfifd.4 | |- ( ph -> F/_ x B ) |
|
| 4 | dfif2 | |- if ( ps , A , B ) = { y | ( ( y e. B -> ps ) -> ( y e. A /\ ps ) ) } |
|
| 5 | nfv | |- F/ y ph |
|
| 6 | 3 | nfcrd | |- ( ph -> F/ x y e. B ) |
| 7 | 6 1 | nfimd | |- ( ph -> F/ x ( y e. B -> ps ) ) |
| 8 | 2 | nfcrd | |- ( ph -> F/ x y e. A ) |
| 9 | 8 1 | nfand | |- ( ph -> F/ x ( y e. A /\ ps ) ) |
| 10 | 7 9 | nfimd | |- ( ph -> F/ x ( ( y e. B -> ps ) -> ( y e. A /\ ps ) ) ) |
| 11 | 5 10 | nfabdw | |- ( ph -> F/_ x { y | ( ( y e. B -> ps ) -> ( y e. A /\ ps ) ) } ) |
| 12 | 4 11 | nfcxfrd | |- ( ph -> F/_ x if ( ps , A , B ) ) |