This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for a class abstraction. Version of nfabd with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) Avoid ax-13 . (Revised by GG, 10-Jan-2024) (Proof shortened by Wolf Lammen, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfabdw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| nfabdw.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | ||
| Assertion | nfabdw | ⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑦 ∣ 𝜓 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfabdw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | nfabdw.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
| 3 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
| 4 | df-clab | ⊢ ( 𝑧 ∈ { 𝑦 ∣ 𝜓 } ↔ [ 𝑧 / 𝑦 ] 𝜓 ) | |
| 5 | sb6 | ⊢ ( [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → 𝜓 ) ) | |
| 6 | 4 5 | bitri | ⊢ ( 𝑧 ∈ { 𝑦 ∣ 𝜓 } ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → 𝜓 ) ) |
| 7 | nfvd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 = 𝑧 ) | |
| 8 | 7 2 | nfimd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑦 = 𝑧 → 𝜓 ) ) |
| 9 | 1 8 | nfald | ⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑧 → 𝜓 ) ) |
| 10 | 6 9 | nfxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑧 ∈ { 𝑦 ∣ 𝜓 } ) |
| 11 | 3 10 | nfcd | ⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑦 ∣ 𝜓 } ) |