This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neifval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | neival | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neifval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | neifval | ⊢ ( 𝐽 ∈ Top → ( nei ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ) |
| 3 | 2 | fveq1d | ⊢ ( 𝐽 ∈ Top → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ‘ 𝑆 ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ‘ 𝑆 ) ) |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) | |
| 6 | cleq1lem | ⊢ ( 𝑥 = 𝑆 → ( ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) ↔ ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) ) ) | |
| 7 | 6 | rexbidv | ⊢ ( 𝑥 = 𝑆 → ( ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) ↔ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) ) ) |
| 8 | 7 | rabbidv | ⊢ ( 𝑥 = 𝑆 → { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } = { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) |
| 9 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 10 | elpw2g | ⊢ ( 𝑋 ∈ 𝐽 → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
| 12 | 11 | biimpar | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ 𝒫 𝑋 ) |
| 13 | pwexg | ⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) | |
| 14 | rabexg | ⊢ ( 𝒫 𝑋 ∈ V → { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ∈ V ) | |
| 15 | 9 13 14 | 3syl | ⊢ ( 𝐽 ∈ Top → { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ∈ V ) |
| 16 | 15 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ∈ V ) |
| 17 | 5 8 12 16 | fvmptd3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ‘ 𝑆 ) = { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) |
| 18 | 4 17 | eqtrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) |