This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neifval.1 | |- X = U. J |
|
| Assertion | neival | |- ( ( J e. Top /\ S C_ X ) -> ( ( nei ` J ) ` S ) = { v e. ~P X | E. g e. J ( S C_ g /\ g C_ v ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neifval.1 | |- X = U. J |
|
| 2 | 1 | neifval | |- ( J e. Top -> ( nei ` J ) = ( x e. ~P X |-> { v e. ~P X | E. g e. J ( x C_ g /\ g C_ v ) } ) ) |
| 3 | 2 | fveq1d | |- ( J e. Top -> ( ( nei ` J ) ` S ) = ( ( x e. ~P X |-> { v e. ~P X | E. g e. J ( x C_ g /\ g C_ v ) } ) ` S ) ) |
| 4 | 3 | adantr | |- ( ( J e. Top /\ S C_ X ) -> ( ( nei ` J ) ` S ) = ( ( x e. ~P X |-> { v e. ~P X | E. g e. J ( x C_ g /\ g C_ v ) } ) ` S ) ) |
| 5 | eqid | |- ( x e. ~P X |-> { v e. ~P X | E. g e. J ( x C_ g /\ g C_ v ) } ) = ( x e. ~P X |-> { v e. ~P X | E. g e. J ( x C_ g /\ g C_ v ) } ) |
|
| 6 | cleq1lem | |- ( x = S -> ( ( x C_ g /\ g C_ v ) <-> ( S C_ g /\ g C_ v ) ) ) |
|
| 7 | 6 | rexbidv | |- ( x = S -> ( E. g e. J ( x C_ g /\ g C_ v ) <-> E. g e. J ( S C_ g /\ g C_ v ) ) ) |
| 8 | 7 | rabbidv | |- ( x = S -> { v e. ~P X | E. g e. J ( x C_ g /\ g C_ v ) } = { v e. ~P X | E. g e. J ( S C_ g /\ g C_ v ) } ) |
| 9 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 10 | elpw2g | |- ( X e. J -> ( S e. ~P X <-> S C_ X ) ) |
|
| 11 | 9 10 | syl | |- ( J e. Top -> ( S e. ~P X <-> S C_ X ) ) |
| 12 | 11 | biimpar | |- ( ( J e. Top /\ S C_ X ) -> S e. ~P X ) |
| 13 | pwexg | |- ( X e. J -> ~P X e. _V ) |
|
| 14 | rabexg | |- ( ~P X e. _V -> { v e. ~P X | E. g e. J ( S C_ g /\ g C_ v ) } e. _V ) |
|
| 15 | 9 13 14 | 3syl | |- ( J e. Top -> { v e. ~P X | E. g e. J ( S C_ g /\ g C_ v ) } e. _V ) |
| 16 | 15 | adantr | |- ( ( J e. Top /\ S C_ X ) -> { v e. ~P X | E. g e. J ( S C_ g /\ g C_ v ) } e. _V ) |
| 17 | 5 8 12 16 | fvmptd3 | |- ( ( J e. Top /\ S C_ X ) -> ( ( x e. ~P X |-> { v e. ~P X | E. g e. J ( x C_ g /\ g C_ v ) } ) ` S ) = { v e. ~P X | E. g e. J ( S C_ g /\ g C_ v ) } ) |
| 18 | 4 17 | eqtrd | |- ( ( J e. Top /\ S C_ X ) -> ( ( nei ` J ) ` S ) = { v e. ~P X | E. g e. J ( S C_ g /\ g C_ v ) } ) |