This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the neighborhood function on the subsets of the base set of a topology. (Contributed by NM, 11-Feb-2007) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neifval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | neifval | ⊢ ( 𝐽 ∈ Top → ( nei ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neifval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 3 | pwexg | ⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) | |
| 4 | mptexg | ⊢ ( 𝒫 𝑋 ∈ V → ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ∈ V ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ∈ V ) |
| 6 | unieq | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = 𝑋 ) |
| 8 | 7 | pweqd | ⊢ ( 𝑗 = 𝐽 → 𝒫 ∪ 𝑗 = 𝒫 𝑋 ) |
| 9 | rexeq | ⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑔 ∈ 𝑗 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) ↔ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) ) ) | |
| 10 | 8 9 | rabeqbidv | ⊢ ( 𝑗 = 𝐽 → { 𝑣 ∈ 𝒫 ∪ 𝑗 ∣ ∃ 𝑔 ∈ 𝑗 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } = { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) |
| 11 | 8 10 | mpteq12dv | ⊢ ( 𝑗 = 𝐽 → ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ { 𝑣 ∈ 𝒫 ∪ 𝑗 ∣ ∃ 𝑔 ∈ 𝑗 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ) |
| 12 | df-nei | ⊢ nei = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ { 𝑣 ∈ 𝒫 ∪ 𝑗 ∣ ∃ 𝑔 ∈ 𝑗 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ) | |
| 13 | 11 12 | fvmptg | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ∈ V ) → ( nei ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ) |
| 14 | 5 13 | mpdan | ⊢ ( 𝐽 ∈ Top → ( nei ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ) |